SHEETS MADE OF ALUMINIUM AND ALUMINIUM ALLOYS TECHNICAL SPECIFICATIONS

GOST 21631-76

Translated by:
M/s SWYAZ
2/453, Viram Khand,
Gomti Nagar,
Lucknow – 226010

1: 0522–3298139 / 2345145

Email: swyaz@sify.com Visit us: http\\:www.swyaz.net УДК 669.14: 006.354 Group B32

STATE STANDARD OF USSR

Sheets made of aluminium and aluminium alloys Technical specifications

GOST 21631-76

ОКП 11 4100

Introduction period <u>01.07.77</u>

This standard pertains to sheets made of aluminium and aluminium alloys, meant for domestic use and export.

(Amended edition, Amendment № 3).

1. CLASSIFICATION

1.1. Sheets are subdivided:

a) using manufacturing method:

not plated - without additional code;

plated - with technological plating - 5,

with normal plating - A, with thickened plating - Y;

б) due to state of material:

without heat treatment - without additional code.

Note. Sheets, manufactured without heat treatment, besides sheets made of alloy of grade BД1, it is permitted to subject to annealing;

annealed - M;

Note. Annealed sheets are permitted to manufacture without heat treatments, if they satisfy requirements, presented for annealed sheets according to mechanical properties, to quality of surface and non-planarity. Such sheets are marked by letter M in brackets - (M);

semi cold-worked - H2,

cold-worked -H.

hardened and naturally aged - T,

hardened and artificially aged - T1,

cold-worked after hardening and natural aging - TH;

B) on quality of finishing of surface:

high finishing - B,

increased finishing - Π ,

usual finishing - without code.

Notes:

- 1. Sheets of high finishing are manufactured with thickness up to 4.0 mm.
- 2. Code fineness of surface B and Π is placed after last two numbers of year of approval of standard.
- 3. Sheets with high surface finishing are manufactured of aluminium of grades A7, A6, A5, A0, АД00, АД0, АД1, АД and aluminium alloys of grades AMц, AMr2, and sheets with increased and usual surface finishing are manufactured of all grades of aluminium and aluminium allovs:
- r) on accuracy of manufacturing:

increased accuracy along thickness, width, length, or one or two of parameters indicated - Π; normal accuracy along thickness, width, length - without additional code.

(Amended edition, Amendment № 1, 2, 3).

2. ASSORTMENT

- 2.1. Thickness of sheets, limit deviations in relation with thickness and widths of sheets and precision of their manufacturing should correspond to those indicated in table 1.
 - 1. Limit deviations of sheets of those annealed also without heat treatment with thickness 5 mm and more of alloys of grades AMr3, AMr5 and AMr6 are established ±5 % from nominal thickness.
 - 2. During manufacturing of sheets with intermediate dimensions on thickness, limit deviations with respect to thickness of sheet for these dimensions is used as for nearest smaller dimension.

3. Theoretical weight (
$$M_{\text{teop.}}$$
) of one linear meter of sheet, kg, is calculated from formula:
$$M_{\text{reop.}} = \frac{H_{\text{MAKC.}} + H_{\text{MUH.}}}{2} \cdot \frac{B_{\text{MAKC.}} + B_{\text{MUH.}}}{2} \cdot \gamma \cdot 10^{-3},$$

where H_{makc} and B_{makc} - large limits of size on thickness and width, mm;

H_{шин}, and B_{шин} - minimum limits of size on thickness and width, mm;

γ - density of aluminium alloy, gm/cm³.

Theoretical weight of one linear meter of sheet, given in required annexure 2 (table 1-3), is calculated at density of 2.85 gm/cm³, which corresponds to density of aluminium alloys of grades B96, B95 - 1, B95 - 2.

For calculating theoretical weight of sheets from another aluminium alloy, it is recommended to use conversion factors, indicated in reference annexure 3.

Table 1

		000	Normal accuracy						0,16	-0,16	0,18	80	-0,26	-0,26	-0,26	-0.26	-0.27	00,30
		1800. 2000	ac ac						1	_ ']	¹		'	Ц				
		18	Increased sed accuracy						-0,14	0,14	-0,16	-0,18	0.24	-0,24	-0,24	0,24	0.25	0,28
		1425, 1600	Normal accura- cy			0,12	0,13	0,13	-0,14	0,14	0,17	-0,17	0,25	0,25	0,25	0,25	0.26	-82°0
	eet	1400. 1425, 1500. 1600	Increas- ed accuracy			0,10	0,11	0,11	0,12	0,12	0,15	0,15	0,20	0.32	0.23	0,22	0,24	98,0
	Ith of she		Normal		0,12	-0,12	0,12	0,12	0,13	0,13	0,16	91.0	0,22	0,22	0,22	0,22	-0.24	0,28 -0,26 -0,29
	ess with wid	1200	Increased accuracy		01.0	-0,10	01.0	-0,10	-0.12	-0.12	-0,14	0,14	-0,18	-0,18	0,20	0.20	020	0,22
III	ect to thickn	00	Normal accuracy	-0,10	-0,10	-0,10	-0,12	-0,12	-0,12	0.12	0,15	-0,15	0,20	-0.20	10,20	00,00	06,0-	-0,25
IIIII	ns with resp	1000	Increased accuracy	-0.07	-0,08	-0,08	-0,10	-0,10	-0,10	-0,10	Q.12	-0.12	-0,14	-0,14	-0,16	-0.16	-0.16	91:0
	Limit deviations with respect to thickness with width of sheet	006	Normal accuracy	80,0—	8010-	90'0-	-0,10	01.0	-0,12	-0,12	-0,15	-0.15	-0,20	-0,20	-0.20	-0.20	0.20	-0,25
	Li	800.900	Increased	90'0-	90'0-	90'0-	-0,08	-0,08	-0,10	-0,10	Q.12	0,12	-0,14	-0,14	-0,16	-0,16	-0.16	-0,18
		0	Normal	-0,05	-0,05	-0,05	90'0-	90,0—	90,0—	90,0—	-0.10	_Q,10	-0,15	-0,15	-0,15	-0.15	-0.15	-0,20
		009	Increased	-0,04	70,0	-0,04	-0,05	-0,05	90'0	90′0-	80,0	80,0—	-0,10	-0,10	-0,10	-0,10	-0.10	-0,12
ļ	196	ods to s	Thicknes	0,3	0.4	0,5	9.0	7.0	8.0	6.0	1,0	1,2	1,5	1,6	1,8	1,9	2,0	2,5

	1800. 2000	Normal accuracy	-0,35	-0,36	-0,37	-0,37	-0,38	-0,38	-0,43	-0,43	-0.44	0,44	-0,48	-0.48	0,49	-0,49	0.50	05,0
	1800	Increa- sed accur- acy	-0,33	-0,34	-0,35	0,35	98.0	-0,36	0,41	-0,41	0,42	-0,42	0,46	9,46	-0.47	-0.47	-0.48	-0,48
	1400. 1425, 1500. 1600	Normal accura- cy	-0,34	-0,35	98.0	98,0	0,37	-0,37	-0,42	0,43	0,43	6.43	-0.47	-0.47	0.48	0.48	0,50	05,0
leet	1400. 1500.	Increas- ed accuracy	-0,28	0,30	-0,34	0.34	6,38	0,35	0.40	0,40	14.0	14.0	0,45	0,45	0 46	0.46	-0.48	0,48
idth of sh	0	Normal accuracy	0,30	-0,32	0,35	98	8,0	0,36	0,41	-0.41	0,42	0,42	0.46	9,6	-0.47	-0,47	0,50	0,50
ess with wi	1200	Increased accuracy	-0,26	0,28	-0,32	-0,34	-0,34	-0,34	-0.38	-0.38	-0.40	-10,40	-0,44	-0,44	-0,45	-0,45	-0,48	0,48
spect to thickr	00	Normal accuracy	0,30	0,30	-0.30	0.30	-0,35	-0,35	0.40	0.40	0.40	0.40	0,45	-0,45	-0,45	-0,45	050	0,50
it deviations with respect to thickness with width of sheet	1000	Increased	-0.20	-0.22	-0.24	-0.26	-0,30	-0.32	0.38	-0.38	-0.38	-0,38	-0,42	-0,42	-0.42	-0.42	0,48	-0,48
Limit deviatio	006	Normal	-0,30	-0,30	-0.30	-030	-0.36	-0.36	-0.40	0,40	-0.40	-0.40	-0,45	-0.45	-0.45	-0.45	0,50	-0,50
	800.900	Increased	-0,20	-0.22	-0.24	-0.26	-0.30	-0.30	-0,35	-0.35	-0,35	-0,35	-0.40	-0.40	-0.40	-0.40	-0,45	0,45
	00	Normal accuracy	-0,25	-0.25	-0.25	-0.25	-0.30	-0,30	0,30	-0,30	-0,30	-0,30	-0,35	-0,36	-0,35	-0,35	-0,40	-0,40
	009	Increased accuracy	-0.14	0,16	-0,18	0.20	-0.24	-0.24	-0,28	-0,28	0,28	. 0.28	-0,33	0.33	-0,33	-0,33	-0.38	-0.38
196	ots Jo s	Thicknes	3.0	3,5	4,0	4,5	5.0	5,5	6,0	6,5	7,0	7,5	8,0	8,5	0.6	9,5	10,0	10,5

(Amended edition, Amendment Nº 2).

2.2. Sheets depending on grade of alloy, plating and state of material are manufactured of lowing dimensions, indicated in table 2.

Table 2

Condition of material of sheet	Grade of aluminium and aluminium alloy and plating	Thickness of sheet	Width of sheet	Length of sheet
	A7, A6, A5, A0		600, 800, 900	2000
	АДО, АД1, АДОО, АД		600, 800 900	2000
	A7, A6, A5, A0, АДО, АД1, АДОО, АД, АМи, АМиС, АМг2, АМг3, АМг5, АМг6, АМг6Б, АВ, Д1А, Д16А, В95—1А, В95—1, В95— —2А, ВД1А, ВД1Б, ВД1, АКМА		1000 1200 1400 1500 1600 1800 2000	От 2000 до 7000
	B95A		1000, 1200 1425, 1500 2000	From 2000 to 7000
	1915		1200, 1500, 2000	From 2000 to 7000
	А7, А6, А5, А0, АД0, АД1, АД00, АД	From 10,3 to 10,5	600, 800: 900, 1000	2000
With out heat treatment	А7, А6, А5, А0, АД0,	From 0,5 to 0,7	1000, 1200, 1400, 1500, 1600	From 2000 to 4000
Without heat treatment	АД1, АД00, АД, АМц, АМцС, АВ, АМг2	Above 0,7 to 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000	(From 2000 to 71000
	АМг3, АМг5, АМ г6,	From 0,5 to 0,7	1000, 1200, 1400, 1500, 1600	From 2000 to 71000
	AMr6B	Above 0,7 to 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000	From 2000 to 71000
	АМг6У	Above 2,0 to 5,5	1000, 1200, 1400, 1500, 1600, 1800, 2000	From 2000 to 71000
	Д12	From 0,5 to 4,0	1200, 1500	From 30100 to 40100

Page 6 GOST 21631-76

Continuation of table 2

	111111				
Condition of material of sheet	Grade of aluminium and aluminium alloy and plating	Thickness of sheet	Width of sheet	Length of sheet	
	TIA DICT HIG DICA	From .0,5 to 10,7	1:000; 1200, 1400, 15:00, 1:600	From 2000 to 44000	
	Д1А, Д16Б, Д16, Д16А	Above 10,7 to 4,0 Above 4,0	1000 1200 1400, 1500, 1600, 1800 2000	From 2000 to 7000 From 2000	
	Д16У	to 10,5 From 0,5 to 0,7	1200, 1500	to 7000 From 2000 to 4000	
		Above 0,7 to 4,0		from 2000 to 7000	
Annealed	7051	From 0,5 to 0,7	1000, 1200, 1425, 1500	to 4000	
	Б95А	Above 0,7 to 4,0	1000, 1200, 1425, 1500, 2000	from 2000 to 7000	
		Above 4,0 to 10,5		From 2000 to 7000	
	B95—2A, B95—25, B95—1A, AKMB, AKMA, AKM	From 1,0 to 10,5	1200, 14 0 0, 1500	to 7000	
	ВДІА, ВДІ, ВДІБ	Above 0,8 to 10,5	1000, 1200, 1400 1500 1600, 1800, 2000	From 2000 to 7000	
	1915	10,8 From 1,0 to 4,5	1200, 1200 1500	From 20:00 to 5:01010	
	А7, А6, А5, А0, АД0, АД1, АД00, АД	From 0,8 to 4,5	1000, 1200, 1400, 1500	From 2000 to 4000	
Semi cold-worked	АМи, АМиС, АМг2,	From 0,5 to 0,7	1000, 1200, 1400, 1500, 1600	From 2000	
zem tera werken	AMr3	Above 0,7 to 4,0	1000 1200 1400 1500 1600 1800 2000	to 7:000	
	Д12	From 0,5 to 4,0	1200, 1500	From 3:0:0:0 to 4:000	

Page 7 GOST 21631-76

Continuation of table 2

Condition of material of sheet	Grade of aluminium and aluminium alloy and plating	Thickness of sheet	Width of sheet	Length of sheet
	А7, А6, А5, А0, АД0, АД1, АД00, АД	From 0,3 to 10,5	600, 800 900, 1000	2000
	А7, А6, А5, А0, АДО,	From 0,5 to 0,7	1000 1200, 1400 1500, 1600	From 2000
	АДІ, АДоо, АД	Above 0,7 to 4,0	1000, 1200, 1400, 1500, 1600, 1800, 2000	to 7000
Cold-worked	мм	From 1,0 to 4,5	1000, 1200, 1400, 1500	From 2000 to 4000
	АМц, АМцС, АМг2	From 0,5 to 0,7	1000, 1200 1400, 1500, 1600	From 2000
		Above 0,7 to 4,0	1000 1200 1400, 1500 1600, 1600, 2000	to 7000
	ВДІБ, ВДІА, ВДІ, АКМА	From 0,8 to 4,0	1000, 1200, 1500	From 2000 to 7000
	АВ, Д1А, Д16Б, Д16,	From 0,5 to 0,7	1000, 1200, 1400, 1500, 1600	From 2000 to 5000
	Д16А	Above 10,7 to 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000	From 2000 to 7200
Hardened and are naturally aged	Д16У	From 0,5 to 4,0	1200, 1500	From 2000 to 7200
	В95—2A, ВД1A, ВД1, ВД1Б, В95—1A, АКМА	From 0,8 to 10,5	1000, 1200 1500, 1600 1800, 2000	From 2000 to 7000
		From 1,0 to 4,5	1200, 1500	From 2000 to 5000
	1915	Above 4,5 to 10,5	1200, :1500, 2000	From 2000 to 7000

mm

Grade of aluminium and aluminium alloy and plating	Thickness of sheet	Width of sheet	Length of sheet
	From (),5 to (),7	1000, 1200 1400, 1500 1600	From 20 30 to 5000
AB	Above 0,7 to 10,5	1000, 1200 1400, 1500 1600, 1800 2000-	From 2000 to 7000
	From 0,5 to 0,7	1000, 1200, 1425, 1500	From 2000 to 5000
B95A	Above 0,7 to 4,0	1000, 1200, 1425, 1500, 2000	From 2000 to 7200
	Above 4.0. to 10.5	1000, 1200, 1425, 1500, 2000	From 20100 to 7000
TIED TIE TIES	From 1,5 to 7,5	1000, 1200, 1400, 1500	From 2000 to 7200
	AB B95A	AB From 0,5 to 0,7 Above 0,7 to 10,5 From 0,5 to 0,7 To 10,5 From 0,5 to 0,7 Above 0,7 to 4,0 Above 4,0 to 10,5 Д16Б, Д16, Д16A From 1,5	AB From 0,5 to 0,7 1000, 1200 1400, 1500 1600 Above 0,7 to 10,5 1000, 1200 1400, 1500 1600, 1800 2000. From 0,5 to 10,7 1060, 1200, 1425, 1500 Above 0,7 to 4,0 1000, 1200, 1425, 1500, 2000 Above 4,0 to 10,5 1000, 1200, 1425, 1500, 2000 Д16Б, Д16, Д16А From 1,5 1000, 1200, 1200, 1425, 1500, 2000

(Amended edition, Amendment № 1, 2, 3).

2.3. Limit deviations with respect to width of sheets in relation with their thickness should correspond to values, indicated in table 3.

Table 3

mm

Thickness of sheet	Width of sheet		spect to width, not more an
		increased accuracy	normal accuracy
Up to 50 including.	Up to 1000 including Above 1000	+6.0	+8.0 + 10
Above 5.0	Up to 1000 including Above 1000	+ 10	+ 12 + 15

Note. Sheets are permitted with length of more than 4000 mm, without trimming of edges, widened in comparison with nominal sizes: with thickness up to 4.0 mm - not more than 25 mm, with thickness more than 4.5 mm - 40 mm,

made of aluminium of all grades and aluminium alloys of grades AMII, AMI2 with length more than 2000 mm with thickness more than 5.0 mm - 60 mm.

(Amended edition, Amendment № 1, 3).

2.4. Sheets are supplied with measured length or multiple measured within limits of lengths, established in table 2, with interval of 500 mm.

Limit deviations along length of sheets, depending on their thickness, should correspond to values, indicated in table 4.

Table 4

	111111		
Thickness of sheet	Length of sheet	Limit deviations with more	respect to length, not than
	_	increased	normal accuracy
From 0.3 to 3.5 including	From 2000 to 7200	+8.0	+20
Above 3.5 to 10.5 "		-	+25

mm

Note. Limit deviations with respect to length on increased accuracy of sheets with thickness more than 3.5 mm is set according to agreement of manufacturer and customer.

(Amended edition, Amendment № 3).

2.5. 10% of sheets, having minus deviation from nominal sizes with respect to width and length not more than 10% are permitted in batch.

Manufacturing of sheets is not permitted on demand of customers with minus deviations from nominal sizes.

(Amended edition, Amendment No 1).

2.6. (Deleted, Amendment № 1).

Examples of conventional codes

Sheet made of aluminium alloy of grade AMr2 in annealed state, with thickness of 0.7 mm, with width of 1200 mm, with length of 2000 mm, increased manufacturing accuracy, high surface finishing:

Sheet AMr2.M 0.7Πx1200Πx2000Π GOST 21631 -76.

In sheet made of aluminium grade AД1, without heat treatment, with thickness of 5 mm, with width of 1000 mm, with length of 2000 mm, normal manufacturing accuracy, usual surface finishing:

Sheet АД1 5x1000x2000 GOST 21631 -76

Similarly, annealed, with increased surface finishing:

Sheet AД1.M 5x1200x2000 GOST 21631 -76.

Similarly, semi cold-worked, increased manufacturing precision along thickness and width:

Sheet АД1.H2 5Пх1000Пх2000 GOST 21631 -76. П

Sheet made of aluminium alloy of grade Д16 with technological plating, cold-worked after hardening and natural aging, with thickness of 2 mm, with width of 1200 mm, with length of 2000 mm, standard precision of manufacturing, increased surface finishing:

Sheet Д16.Б.ТН 2x1200x2000 GOST 21631 -76. П

Similarly, of increased manufacturing precision on thickness:

Sheet Д16.Б.ТН 2Пх1200х2000 GOST 21631 -76. П

(Amended edition, Amendment № 1, 3).

3. TECHNICAL REQUIREMENTS

3.1. Sheets are manufactured in conformity with requirements of this standard on technological regulations, affirmed in set order.

(Amended edition, Amendment No 1).

- 3.1.1. Sheets are manufactured of aluminium of grades A7, A6, A5, A0 with chemical composition according to GOST 11069 -74; sheets made of aluminium of grades АД00, АД0, АД1, АД and all aluminium alloys with chemical composition according to GOST 4784 -74; sheets made of aluminium alloys of grades B95 -1, AKM, B95 -2 and ВД1 with chemical composition according to GOST 1131 -76.
- 3.2. For plating of sheets, depending on grade of alloy, aluminium with chemical composition, indicated in table 5, is used.
- 3.3. Thickness of plating layer on each side of sheet depending on thickness of sheet should correspond to values, indicated in table. 6.

3.1.1 -3.3. (Amended edition, Amendment \mathbb{N}_{2} 2).

- 3.4. Mechanical properties of sheets should correspond to requirements, indicated in table 7. (Amended edition, Amendment № 1, 2).
- 3.5. Mechanical properties of annealed sheets, subjected to hardening and aging, and also hardened and aged sheets, which passed rehardening and aging in customer, should satisfy requirements, indicated in table 8.
- 3.6. Sheets should be cut on end-faces at right angle. Slant of cut should not take out sheets for limit deviations with respect to width and length. On edges of cut sheets, burrs and stratifications, undercuts and cracks are not permitted. In sheets, made by those widened in conformity with note to table 3, undercuts and cracks on edges are permitted, if they do not take out sheet beyond limits of nominal width.

3.5 -3.6. (Amended edition, Amendment № 1).

Table 5

		Cł	nemica	al com	positi	on of pla	ating 1	nateri	al, %			
	Alloying co	mponents				Admix	tures,	not m	ore th	an		г
Grade of				u	i.	ese		1	inm	Othe admixtu		nissible ıres
plating	Aluminium	Zinc	Iron	Silicon	Copper	Manganese	Zinc	Titan	Magnesium	Each separately	Sum	Sum of permissible admixtures
Д1А, Д16А, Д16Б, Д16У, АМг6Б АМг6У ВД1А, ВД1Б, АКМБ, АКМА	Not less than 99.30		0,30	0,30	0,02	0,025	0,1	0,15	0,05	0,02	1	0,70
B95A, B95—2A B95—25, B95—1A	Basic components	0,9—1,3	0,3	0,3	1	0,025		0,15	-	0,05	0,1	_

Table 6

	1 0	yer on each side of shee of sheet in % with plating				
Thickness of sheet, mm	technological	normal	thickened			
	more than	not less than				
From 0.5 to 1.9	1.5	4.0	8.0			
Above 9 to 4.0	1.5	2.0	4.0			
Above 4.0 to 10.5	1.5	2.0				

Note. Thickness of thickened plating for sheets made of alloy of grade AMr6 should comprise on each side of sheet not less than 4.0% of actual thickness of sheet.

3.7. Surface of sheets of all groups of finishing should be glossy or lusterless, without cracks, flaws, stratifications, bubbles of overburning, film of saltpeter, spots of corrosive origin, diffusion spots (on sheets with thickness of more than 0.6 mm with normal and thickened plating), slag inclusions, exposed from plating of sections (on sheets with normal and thickened plating), and also washed away whitish spots,

Grade of					Mechanical properties during tension	operties durin	Table 7 g tension
of mate sheets	iterial of ts	State of material of Code of alloy and state of sheets	State of test samples	Thickness of sheet, mm	Ultimate stress $\sigma_{\rm B}$, MPa (kgf/mm ²)	Yield point $\sigma_{0.2}$ MPa (kgf/mm^2)	Kelative elongation at $l = 11.3$ $\sqrt{F} \delta$, %
						not less than	
Annealed		A7M, A6M, A5M, A0M, A Q0M, A Liim, A Loom, A Liim	Annealed	From 0,3 to 0,5 Above 0,5 > 0,9 > 0,9 > 10,5	(0,6) (0,6) (0,6) (0,6)	1 1 1	2000 25,0 30,0
w-plo	Semi cold-worked	А7Н2, А6Н2, А5Н2, А0Н2, АДОН2, АДІН2 АДООН2, АДН2	Semi cold-worked	From 0,8 to 4,5	100 (10,0)		0.0
Cold-worked		А7Н, А6Н, А5Н, А0Н, АД0Н, АД1Н АД00Н, АДН	Cold-worked	From Q3 to Q,8 Above Q,8 > 3,5 * 35 > 10,5	145 (15,0) 145 (15,0) 130 (13,0)	1 1	9,40 0,00 0,00
Without treatment	heat	АД, А6, А5, А0, АДО, АД1, АДОО, АД	Without heat treatment	From 5,01 to 10,5	70 (7,0)	1	15,0
Annealed		АМиМ, АМиСМ	Annealed	From 0,5 to 0,7 Above 0,7 * 3,0 * 3,0 * 10,5	(0'6) 06 (0'6) 06 (0'6) 06	1 1 1	18.0 22.0 20.0
w-ploc	Semi cold-worked	AMuH2, AMuCH2	Semi cold-worked	From 0,5 to 3,5 Above 3,5 > 4,0	145 (15,0) 145 (15,0)	1 1	6,5 6,0
Cold-worked	þ	АмиН, АмиСН	Cold-worked	0,5 Above 0,5 to 0,8	185 (19,0) 185 (19,0)	11	150 250

Page 13 GOST 21631-76

1	I , I	ı				•	•	1 .		1	
ng tension	Relative elongation at $l = 11.3$ $\sqrt{F} \delta$, %		3,0. 4,0	10,0		14,0	3,0	16,0	0,3 6,0	3,0	0°2
operties duri	$\begin{cases} \text{Yield point} \\ \sigma_{0.2} \\ \text{MPa} \\ \text{(kgf/mm}^2) \end{cases}$	ot iess uian	-	}	Not tested				145 (15,0) 145 (15,0)	215 (22,0) 215 (22,0)	
Mechanical properties during tension	Ultimate stress $\sigma_{\rm B}$, MPa (kgf/mm ²)	III	185 (19,0) 185 (19,0)	100 (100)		155 (16,0)	220 (22,5)	165 (17,0) 165 (17,0)	235—314 (24,0—32,0) 235—314	27,0) 27,0)	175 (18,0)
	sheet,		1,2	10,5	4,5	4.0	0,4	1,0 10,5	1,0	0.0	10,5
	Thickness of sheet, mm		Above 0,8 to	From 5,0 to	From 1,0 to	From 0,5 to	From 0,5 to	0,5 Above 1,0 to	From 0,5 to Above 1,0 to	From 0,5 to Above 1,0 ➤	From 5,0 to
	State of test samples		Cold-worked	Without heat treatment	Cold-worked	Annealed	Semi cold-worked	Annealed	Semi cold-worked	Cold-worked	Without thermal Workings/treatments
	Code of alloy and state of material		Амин, Амисн	АМи, АМиС	IMMH	Д12М	Д12Н2	AMr2M	AMr2H2	- AMr2H	AMr2
	State of material of sheets		Cold-worked	Without heat treatment	Cold-worked	Annealed	Semi cold-worked	Annealed	Semi cold-worked	Cold-worked	Without heat treatment
Grade of	aluminium and aluminium alloy and	0	A.M.u.	AMuC	WW	6111	7.	,	AMr3		

Page 14 GOST 21631-76

1 1	1 1										
ng tension	Relative elongation at $l = 11.3$ $\sqrt{F} \delta$, %		15,0		7,0 7,0	12,0 15,0	15.0 15.0 0.03	12,0 15,0	0,81 0,81	15,0	16,0
Mechanical properties during tension	Yield point $\sigma_{0.2}$ MPa (kgf/mm²)	not less than	(0,6) 06	80(8,0)	195 (20,0) 195 (20,0)	80(8,0) 80(8,0)	135 (14,0) 145 (15,0) 130 (13,0)	130(19,0)	145 (15,0)	155(16,0)	130(13,0)
chanical pr	Ultimate stress onumber of the control of the cont	nC	(20,0)		1 1	(19,0)	(28.0) (28.0) (28.0)	ì	(31,0)	-	(28,0)
Me	Ultin		195	188	245 245	185 185	275 275 275	275 275	305 315	315	275
	f sheet,		0,6 4.5	10,5	1,0	6,0	0,6 4,5 10,5	6,0	0,6		5,5
	Thickness of sheet, mm		From 0.5 to Above 0.6 ➤	× 4,5 ×	From Q,5 to Above 1,0 *	From 5,0 to Above 6,0 ★	From 10 5 to Above 10 6 ×	From 5,0 to Above 6,0 >	From (0.5 to Above (0.6 *	From 5,0 to	From 2,0 to
	State of test samples		Annealed		Semi cold-worked	Without heat treatment	Annealed	Without heat treatment	Annealed	Without heat treatment	Annealed
	Code of alloy and state of material		AMr3M	* :	AMr3H2	AMr3	AMr5M	AMr5	AMr65M, AMr6M	AMr6B, AMr6	AMr6VM
	State of material of sheets		Annealed		Semi cold-worked	Without heat treatment	Annealed	Without heat treatment	Annealed	Without heat treatment	Annealed
Grade of	aluminium and aluminium alloy and plating	_ 			A.Mr3			CHAIN	A.M. EE	AMr6	AMr6y

Page 15 GOST 21631-76

ng tension	Relative elongation at $l = 11.3$ $\sqrt{F} \delta$, %		20,0	15,0	18.0	18,0 16,0	10,0	0; 0	14,10	0,7		12,0	12,0	15,0
roperties duri	Yield point $ \begin{array}{c} \sigma_{0.2} \\ \text{MPa} \\ \text{(kgf/mm}^2) \end{array} $	not less than	l		1 [. [[ſ	1	ſ	1				185 (19,0) 195 (20,0)
Mechanical properties during tension	Ultimate stress $\sigma_{\rm B}$, MPa (kgf/mm ²)	П	Not more than 145 (15,0) Not more than	145 (15,0)		195 (20,0) 175 (18,0)	295 (30,0)		175 (18,0)	295 (30,0)	1 1	(15,0-23,0)		365 (37,0) 375 (38,0)
	Thickness of sheet, mm		From 0,5 to 5,0 Above 5,0 > 10,5		From 0,5 to 0,6 Above(0,6 > 3,0	* * *	3	*	From 5,0 to 10,5	From 5,0 to '10,5	3	Above 1,9 * 110,5		From 0.5 to 1,9 Above 1,9 > 10,5
	State of test samples		Annealed	Hardened and are	aged	Hardened and	aitiiciaiiy aged	Hardened and are naturally aged	Hardened and artificially aged	Annealed	100	naturally aged)	
	Code of alloy and state of material		ABM		ABT		ABTI			AB	ДІАМ			діат
	State of material of sheets		Annealed	Hardened	aged	Hardened and	ainiiciaiiy ageu	Without heat reatment		Annealed		naturally aged)	
4000	orade of aluminium and aluminium alloy and plating					AB							Д-11А	

Page 16 GOST 21631-76

ū	$\frac{\text{ve}}{\sqrt{F}}$					<u> </u>	<u> </u>	
ng tension	Relative elongation at $l = 11.3 \sqrt{F}$ δ , %	13,0	10,0	13,0 11.0 10,01	10.0 8	10,0	13,0 14,0 10,0	10.0
Mechanical properties during tension	Yield point $ \begin{array}{c} \sigma_{0.2} \\ MPa \\ (kgf/mm^2) \end{array} $	[185(19,0)	1	290 (29,5) 290 (29,5) 290 (29,5)	360 (36,5) 360 (36,5)	1 1	270(27,5) 275(28,0) 275(28,0)	255(26,0)
Mechanical p	Ultimate stress $\sigma_{\rm B}$, MPa (kgf/mm ²)	355 (36,0)	145—235 (15,0—24,0)	440 (45,0) 440 (45,0) 440 (45,0)	475 (48,5) 475 (48,5)	[45—225 (15,0—23,0) 145—235 (15,0—94,0)		415 (42,0)
	f sheet,	10,5	10,5	1,5 6,0 10,5	3.0 18.5	1,9 ▶ 10,5	1.9 6.0 5.05	10,5
	Thickness of sheet, mm	From 5.0 to	From 5,0 to	From 0,5 to Above 1,5 *	From 1,5 to Above 3,0 *	From 0,5 to Above 1,9 >	From Q.5 to Above 1,9 *	From 5,0 to
	State of test samples	and are		nd are	after d natural		nd are	and are
	State of te	Hardened ar naturally aged	Annealed	Hardened an naturally aged	Cold-worked hardening an aging	Annealed	Hardened ar naturally aged	Hardened ar naturally aged
	Code of alloy and state of material	Д1А	Д16БМ, Д16М	д16БТ, д16Т	діб5ТН, Д16ТН	Д16АМ	Д16АТ	Д16А
	State of material of sheets	Without heat treatment	Annealed	Hardened and naturally aged	Cold-worked after hardening and natural aging	Annealed	Hardened n naturally aged	Without heat treatment
Grade of	aluminium and aluminium alloy and plating	Д1А		H165	Д16		Д16А	

Page 17 GOST 21631-76

Relative elongation at $l = 11.3$ $\sqrt{F} \delta$, %	10.0 8,0	10,0	13 0 13 0	10,0	7,0 7,0 6,0	6,0
roperties duri Yield point $\sigma_{0.2}$ MPa (kgf/mm²)	335 (34,0) 345 (35,0)		230(23,5) 270(27,5)	l	400 (41,0) 410 (42,0) 410 (42,0)	410(42.0)
	n 425 (435) 455 (465)	130—225 (13,0—23,0) 130—235 (13,0—24,0)	365 (37,0) 405 (41,5)	Not more than 245 (25,0)	480 (49,0) 490 (50,0) 490 (50,0)	490 (50,0)
sheet,	7,5	1,9	1,9	10,5	1,9 6.0 10.5	10,5
Thickness of sheet,	From 1,5 to Above 1,9 *	From (0,5 to Above 1.9 >	From 10,5 to Above 1,9 >	0,5	From 0,5 to Above 1,9 > 6,0 > 1	From 5,0 to
nples	and 1	<u> </u>	and		and	4
State of test samples	Cold-worked hardening natural aging	Annealed	Hardened naturally aged	Annealed	Hardened artificially aged	Hardened artificially aged
Code of alloy and state of material	Д16АТН	Д16УМ	Д16УТ	B95AM	B95AT1	B95A
State of material of sheets	Cold-worked after hardening and natural aging	Annealed	Hardened and naturally aged	Annealed	Hardened and artificially aged	Without heat treatment
Grade of aluminium and aluminium alloy and	Д16А	Д16У			B95A	

Page 18 GOST 21631-76

•									
ng tengion	Relative elongation at $l = 11.3$ $\sqrt{F} \delta$, %		10,0		0f01	0.01		110	10
inite dirii	Yield point $\sigma_{0.2}$ MPa (kgf/mm²)	not less than	1	Not tested	1]	Not tested	ļ	195 (20,0)
Machanical propartiae during tancion	Ultimate stress $\sigma_{\rm b}$ MPa (kgf/mm ²)	nc	Not more than 245 (25,0)	Z	315 (32,0)	315 (32,0)	Z	Not more than 245 (250)	315 (32,0)
	sheet,		10,5	4,0	10,5	10.5		4,5	10,5
	Thickness of sheet, mm		From 1,0 to	From 0,8 to	From 1,0 to	From 5,0 to .10,5		From I,O to	From 1,0 , to
	State of test samples		Annealed	Cold-worked	d and are	Without heat treatment		Annealed	Hardened to naturally aged during 30 - 35 days
	Code of alloy and state of material		B95—2AM, B95—2BM, B95—1AM, AKMEM, AKMAM, AKMEM	AKMAH	B95—2AT, B95—1AT, AKMAT	B95—2A	B95—1A, B95—1, AKMA	1915M	1915T
	State of material of sheets		Annealed	Cold-worked	Hardened and are naturally aged	Without heat treatment		Annealed	Hardened and naturally aged
	Grade of aluminium and alloy and alloy and	piaung	B95—2A B95—2B, B95—1A B95—1, ĀKMB, AKMA,	ł	B95—26, B95—26, B95—1A, B95—1,	AKMB, AKMA,	AKW		1915

Page 19 GOST 21631-76

Continuation of table 7

ng tension Relative elongation at $I = 11.3$ $\sqrt{F} \delta$, %	10	01	10	10,0	12,0
properties duri Signature $\frac{\text{Yield point}}{\sigma_{0.2}}$ MPa (kgf/mm²) not less than	165(17,0)	195 (20,0)	165 (17,0)	1	l
	275 (28,0) 165(17,0)	315 (32,0)	265 (27,0) 165(17,0)	Not more than 245 (25,0)	335 (34,0)
Thickness of sheet,	to 10,5	From 5,0 to 10,5	to 10,5	From 0,8 to 10,5	From 0,8 to 10,5
Thicknes	From 1,0 to 10,5	From 5,0	From 5,0	From 0,8	
State of test samples	Hardened and are naturally aged during 2 -4 days	Hardened and naturally aged during e*0 -of 35 days	Hardened naturally aged during 2 -4 From 5,0 to 10,5 days	Annealed	Hardened by n naturally aged
Code of alloy and state of material	1915T	1915	1915	ВДІАМ, ВДІМ, ВДІБМ	ВДІАТ, ВЛІТ, ВДІБТ
State of material of sheets	Hardened and are naturally aged	Without heat treatment	Without heat treatment	Annealed	Hardened and are naturally aged
Grade of aluminium and alloy and plating		1916		ç	ВД1Б ВД1

Page 20 GOST 21631-76

ng tension Relative elongation at $l = 11.3$ $\sqrt{F} \delta$, %		12,0
properties during tension Yield point Relative $\sigma_{0.2}$ Robation MPa at $l = 11.3$ (kgf/mm ²) \sqrt{F} δ , %	Not tested	ı
Mechanical properties during tension Ultimate stress $ \frac{\sigma_{\rm b}}{({\rm kgf/mm}^2)} \frac{{\rm Yield~point}}{({\rm kgf/mm}^2)} \frac{{\rm Relative}}{({\rm kgf/mm}^2)} \frac{{\rm at}~l = 11}{\sqrt{F}~\delta, \%} $	Z	335 (34,0)
	4,0	10,5
ess of a	3	3
Thickne	From 0,8 to 4,0	From 5,0 to 10,5
ımples		heat
State of test samples	Cold-worked	Without
Code of alloy and state of material	ВДІН, ВДІАН, ВДІБН	еат ВД1, ВД1А, ВД1Б
State of material of Code of alloy and sheets of material	Cold-worked	Without heat treatment
Grade of aluminium and aluminium alloy and plating	ВД1А ВД1Б, ВД1	

Notes:

- 1. On demand of customer, annealed sheets made of aluminium are manufactured with ultimate stress not more than 110 MPa (11 kgf/mm²).
- 2. Sheets made of alloy of grade of AMu with thickness from 1.0 to 4.0 mm in semi cold-worked state on requirement of customer are manufactured with ultimate stress of from 147 MPa (15.0 kgf/mm²) to 196 MPa (20.0 kgf/mm²).

formed during hardening, and non-metallic inclusions metallurgical origin, if are not moved away during control etching in 5 -6% solution NaOH at 50°C for 1 -3 min with subsequent bright dipping in 30% solution HNO₃. On sheets made of alloy of grade AMu, grain size, determined by surface finish of samples, subjected to tension, that exceeds value, indicated in required annexure 1 is not permitted.

Table 8

			Mechanical pro	operties during	tension
alloy	samples	sheets, mm	Ultimate	Yield point	Relative
			stress $\sigma_{\rm B}$,	$\sigma_{0.2}$	elongation at
			MPa (kgf/mm²)	MPa (kgf/mm²)	$l = 11.3 \sqrt{F}$
			(Kgi/IIIIII)	not less than	δ, %
	Hardened and are			not less than	
Д1А	naturally aged	From 0,5 to 1,9 Above 1,9 > 10,5	355 (36,0) 355 (36,0)	185 (19,0) 195 (20,0)	15,0 15, 0
ді6Б	Hardened and naturally aged	From 0,5 to 1,5 Above 1,5 > .6,0 > 6,0 > 10,5	425 (43,5) 425 (43,5) 425 (43,5)	275 (28,0) 275 (28,0) 275 (28,0)	13,0 11,0 10.0
<u>Д</u> 16А	Hardened and are naturally aged	From 0,5 to 1,9 Above 1,9 > :10,5	390 (40,0) 410 (42,0)	255 (26,0) 265 (27,0)	15,0 12,0
Д16У	Hardened and are naturally aged	From 0,5 to 1,9 Above 1,9 * 4,0	350 (35,5) 390 (40,0)	220 (22,5) 255 (26,0)	13,0 13,0
B95A	Hardened and artificially aged	From 0,5 to 1,0 Above 1,0 > 6,0 > 6,0 > 10,5	470 (48,0) 480 (49,0) 480 (49,0)	390 (40 0) 400 (41 0) 400 (41 0)	7,0 7,0 6,0
1.0	Hardened and are naturally aged	From 0,5 to 0,6 Above 0,6 * 3,0 * 3,0 * 5,0 * 5,0 * 10,5	175 (18,0) 175 (18,0) 175 (18,0) 155 (16,0)		18,0 20,0 18,0 16,0
AB	Hardened and artificially aged	From 0,5 to 5,0 Above 5,0 > 10,5	275 (28,0) 275 (28,0)	 	10,0 8,0

3.8. Following are not permitted on face side of sheets of high surface finishing: spot and strip made of burned lubricant, imprints from shafts in form of light and dark strips and undercuts.

Parameter of surface finish of sheet should not be more than Ra=1.25 mm according to GOST 2789 -73.

(Amended edition, Amendment No.1.3).

- 3.8.1. Following are permitted on face side of sheets of high finishing:
 - a) metallic small declines with total area not more than 20 mm² by 1 m² on surface of sheets with width up to 1200 mm inclusively and not more than 50 mm² by 1 m2 on surface of sheets with width of more than 1200 mm;
 - б) sleeve from breaking-off of declines;
 - B) bubbles with total area not more than 20mm² by 1 m² on surface of sheet with dimensions of each bubble not more than 5 mm²;
 - r) single and group small scratches with depth not more than 0.02 mm on sheets with width up to 1200 mm and not more than 0.05 mm on sheets with width of more than 1200 mm. In one group not more than five scratches, which are placed in square 200x200 mm;
 - д) incision, which has length of separate prime not more than 4mm;
 - e) imprints in form of small dents and convexities;
 - ж) single breakages from bends of annealed sheets with thickness of 0.5 -0.8 mm, with width of 1000mm and more at length more than 4000 mm and with width of 1500 mm and more at length of 4000 mm;
 - 3) light worn-out condition with total area not more than 1 % surface of sheet;
 - и) imprints from shafts in form of separate "languages" (aluminium plating) with length not more than 50 mm with width not more than 5 mm, with total area not more than 1 % surface of sheet;
 - k) temper colour.
- 3.8.2. Surface, opposite to face side of sheets of high finishing, should correspond to requirements for face side of sheets of increased finishing.

3.8.1; 3.8.2. (Amended edition, Amendment N_2 1).

3.9. On face and opposite face side of sheets of increased finishing in all states, except those annealed and semi cold-worked, spots and strips from burned lubricant are not permitted.
Parameter of surface finish of sheet should not be more than Ra=2.5 mkm according to GOST 2789 -73.

(Amended edition, Amendment № 1, 3).

- 3.9.1. Following are permitted on face side of sheets of increased finishing:
 - a) metallic small declines with total area not more than 50 mm² by 1 m² on surface of sheet for aluminium and aluminium alloys of all grades, with exception of aluminium alloys of grades

AMr3, AMr5, AMr6, where declines are permitted with total area not more than 80 mm² by 1 m² on surface of sheet;

- б) sleeve from breaking-off of declines;
- B) bubbles with total area not more than 40 mm² by 1 m² on surface of sheet with dimension of each bubble not more than 10 mm²;
- r) flat bubbles, diffusion spots and exposed from plating sections without cracks on sheets with technological plating;
- д) single and group small scratches with depth not more than 0.05 mm. In one group, not more than 8 scratches, which are placed in square 200x200 mm;
- e) incision and aluminium plating in form of primes, which have length not more than 5 mm;
- ж) imprints in form of small dents and convexities;
- 3) single breakages from bends in annealed and hardened sheets with thickness of 0.5 -0.8 mm, with width of 1000 mm and more at length more than 4000mm and with width of 1500mm and more at length up to 4000mm;
- и) transverse undulation with depth up to 0.2 mm, that is obtained from vibration on sheets of those cold-worked and on sheets made of alloys of grades Amr5 and AMr6, manufactured without plating;
- k) light worn-out condition with total area not more than 2 % surface of sheet;
- π) imprints from shafts in form of separate "languages" (aluminium plating) with length not more than 50 mm, with width not more than 5mm, with total area not more than 3% surface of sheet:
- м) light traces of warping sheets from hardening (mastication), not perceived by hand in hardened sheets with thickness of 0.5 -0.8 mm;
- н) temper colour;
- o) imprints from shafts "fir tree" on sheets of aluminium and aluminium alloy of grade AMμ with total area not more than 5% surface of sheet;
- π) imprints from shafts in form of light and dark strips (without undercuts), which go along rolling;
- p) spots and strips from emulsion with total area not more than 3% surface of sheet;
- c) transverse banding in hardened sheets, which is obtained during hardening of sheets in furnace with air circulation, and weakly expressed divorces.

(Amendment edition, Amendment No 1).

3.9.2. Surface, opposite to face side of sheets of increased finishing, should correspond to requirements of point 3.9.1, in this case following are permitted:

metallic small declines with total area not more than 100 mm² by 1 m² on surface of sheet; single and group small scratches with depth not more than 0.05 mm (without limitation of groups);

light worn-out condition with total area not more than 5% surface of sheet; spots and strips from emulsion with total area not more than 5% surface of sheet.

(Amended edition, Amendment No 2).

3.10. On face and opposite face side of sheets of usual finishing in all states of material, except annealed and semi cold-worked, spots and strips from burned lubricant are not permitted.

Parameter of surface finish of sheet should not be more than Ra = 2.5 mkm according to GOST 2789 -73.

(Amended edition, Amendment No 3).

- 3.10.1. On face and opposite face side of sheets of usual surface finishing, following are permitted: declines, sleeve from breaking-off of declines, bubbles, single and group scratches, smooth cut and aluminium plating and other defects, caused by manufacturing method, with total area not more than 5% surface of sheet.
- 3.11. Depth of overlap of all of those enumerated in sub-point 3.8.1; 3.9.1; 3.10.1 of permissible defects should not exceed half of limit deviations of thickness of sheet and should not disrupt plating layer on sheets with thickened and normal plating.

3.10.1; 3.11. (Amended edition, Amendment N_2 1, 2).

3.11.1. On sheets made of aluminium and aluminium alloys of grades АМц, АМцС, Д1, Д16, B95, 1915, AB, AMr2, AMr3, AMr5, AMr6 of high and increased surface finishing permissible defects, enumerated in sub-point 3.8.1 and 3.9.1, should not take out sheet for limit deviations with respect to thickness of sheets.

(Amended edition, Amendment № 1).

3.12. On sheets of high and increased surface finishing, separate cleaned sections are permitted with total area not more than 0.5% surface of sheet, and on sheets of usual finishing with 1% of surfaces of sheet, cleaned by abrasive paper on paper base with granularity not are larger than 6 according to GOST 6456 -82 or by abrasive paper on woven base with granularity not larger than 6 according to GOST 5009 -82 at depth not more than half of thickness of plating layer, but for nonplated sheets - at depth not more than half of limit deviation of thickness of sheet.

(Amended edition, Amendment № 1, 2).

- 3.13. Sheets without heat treatment are manufactured, on quality of surface of increased finishing and usual surface finishing.
- 3.14. It is permitted to establish norms of quality of surface of sheets, according to agrwwmwnt between manufacturer and by customer.

(Amended edition, Amendment No 1).

3.15. Deviation from planeness of sheets made of aluminium alloys of grades AB, Д1, В95, Д16, 1915, В95 -1, В95 -2, АКМ, ВД1, manufactured in annealed, hardened and aged states, should correspond to requirements, indicated in table 9.

Table 9

		mm			
			Deviation from planeness with free placing of sheets (by each side) on plane of plate, not more than		
Thickness of sheet	Width of sheet	Length of sheet	along entire surface and (including long side)	on short sides (including long sides up to 300 mm form angles of sheet)	
From 0.5 to 1.5	Up to 1200 Above 1200 to 1600	Up to 7200	14 16	20 20	
Above 1.5 to 4.0	Up to 1200 Above 1200 to 1600	Up to 7200	18 18	30 30	
Above 4.0 to 10.5	Up to 1200 Above 1200 to 1600	Up to 7200	20 22	40 40	
From 0.8 to 2.0	Above 1600 to 2000	Up to 4000 Above 4000 to 7200	20 23	40 45	
Above 2.0 to 10.5	Above 1600 to 2000	To 4000 Above 4000 to 7200	24 25	50 50	

3.15.1. Deviation from planeness of sheets made of aluminium of all grades and aluminium alloys in semi cold-worked and cold-worked states, and also sheets in annealed state made of aluminium of all grades and aluminium alloys (except those enumerated in point 3.15) should correspond to requirements of table 10.

Table 10

	J	[11111]		
Thickness of sheet	Width of sheet	Length of sheet	on entire surfaces of sheet (including	long sides up to 300 mm from angles of
From 0.3 to 3.0 Above 3.0 > 6.0 > 6.0 > 10.5	Up to 10010	Up to 20000	14 18 23	sheet) 14 18 23
From Q , 5 to 1 , 0	Above 10000 to 1200 > 1200 > 1600	Up to 4000	15 16	210 25
	Up to 1200 Above 1200 to 1600	Above 4:0 0 0 to 7:000	20 35	25 45
Above 1,0 > 1,5	From 110010; to 12010 Above 12010 > 11600	Up to 4000	20 25	25 30
	Up to 1200 Above 1200 to 1600	Above 4:0:000 to 7:0:00	25 30	30 45
Above:1,5 > 3,0	From 1000 to 1200 Above 1200 > 1600	Up to 4/0/010	25 25	30 35
	Up to 1200 to 1600	Above 4000 to 700 0	25 25	30 40
Above 3,0 > 4,0	From 1000 to 1200 Above 1200 > 1600	Up to 440/000 .	25 25	40 40
	Up to 1200. Above 1200 to 1600.	Above 4,000 0, to 7,00 0	25 30	40 45
Above 4,0 > 6,0	From 1:00(0) to 120(0) Above 120(0) > 160(0)	Up to 4.0000	25 30	40 40
20010 3, U. W. Oyu	Up to 1200 Above 1200 to 1600	Above 4000 to 7000	25 30	40 45
Above 6,0 > 10,5	1000 1200 1200 > 1600	Up to 4:000	25 30	410 410
10,0	Up to 1200 Above 1200 to 1600	Above 40000 to 7.0000	25 30	410 45
From 0,8 to 10,5	Above 1600 to 2000	Up to 4000 Above 4000 to 7000	35 50	50 55

3.15; 3.15.1. (Amended edition, Amendment № 1, 2, 3).

3.15.2. Deviation from planeness of sheets of aluminium and aluminium alloys in annealed state with thickness more than 4.0 mm, manufactured with method of hot rolling, and also without heat treatment, should correspond indicated in table 1.

Table 11

		mm		
Thickness of sheet	Width of sheet	Length o	f Deviation from	n planeness during
		sheet	free piling of s	sheet (each side) of
			plane of plate, r	ot more than
			along entire	on short sides,
			surface of	including long
			sheet,	sides up to 300 mm
			including long	from angles of
			sides	sheet
From 5.0 to 10.5	Up to 1200	Up To 7000	25	45
	Above 1200 to 1600		30	45
	Above 1600 to 2000		40	55

Note. Deviation from planeness of sheets made of aluminium alloys of grades AMr3, AMr5, AMr6, AMr6B, supplied without heat treatment, should satisfy following requirements: deviation from planeness during free piling of sheet - by each side to plane of plate can be on 20 mm more than norms, indicated in table 11.

(Amended edition, Amendment № 1, 2).

3.16. Microstructure of sheets, which passed hardening, should not have overburning.

(Introduced additionally, Amendment № 2).

4. ACCEPTANCE RULES

4.1. Sheets are presented for acceptance in batches. Batch should consist of sheets of one grade of aluminium or aluminium alloy, one state of material and one dimension and be accompanied by document about quality, which contains:

trade mark or trade mark and name of manufacturing plant;

name of customer enterprise;

conventional code;

batch number;

net weight of batch;

results of tests (for mechanical properties, indicate only maximum and minimum values);

date of dispatch;

code of this standard.

On demand of customer, copy of protocols of chemical analysis is sent.

Weight of batch is not limited.

Note. If batch consists of sheets of different charge of heat treatment, then each charge should be inspected for correspondence to requirements of this standard.

4.2. Chemical composition is determined on two sheets from batch. Other admixtures are not monitored.

Manufacturer is permitted to determine alloying ingredient and basic admixtures during each melting.

4.3. Each tenth sheet is subject to inspection of dimensions.

4.1 -4.3. (Amended edition, Amendment № 1)

4.4. Quality of surface and deviation from planeness of sheets are checked on each sheet.

Manufacturer conduct inspection of surface finish periodically according to demand of customer.

Note. Manufacturing plant is permitted not to carry out per sheet inspection of sheets of increased finishing and usual finishing.

(Amended edition, Amendment № 1, 3).

- 4.5. Quantity of sheets, indicated in table 12, are subject to inspection of mechanical properties during tension (ultimate stress, yield point and relative elongation) depending on grade of aluminium alloy and state of material, but not less than according to one sheet from each batch presented to delivery.
- 4.6. Mechanical properties of sheets without heat treatment, annealed (besides sheets made of aluminium alloys of grades AMr3, AMr5, AMr6), cold-worked made of aluminium of all grades and aluminium alloys (except sheets made of alloy of grade Д16 in state cold-worked after quenching and natural aging), and also hardened and naturally aged sheets made of aluminium alloys of grades Д1, ВД1, В95 -2, В95 -1, AKM by manufacturing plant are not monitored, but are ensured by manufacturing technology.

Manufacturer conducts testing of mechanical properties of sheets made of alloy of grade 1915 in hardened and aged state after 2 -4 days natural aging, and customer - after 30- 35 days natural aging.

4.7. Testing for mechanical properties of sheets is permitted, which passed heat treatment in tape, conduct in three samples from each roll (in the beginning, middle and end of roll).

Table 12

			1 autc 12
		Quantity of exp fins from batch	n, %, not more
Grade of aluminium and aluminium alloy and plating	State of material	Ultimate stress and relative tensile elongation	Tensile yield point
AMr3, AMr5, AMr6, AMr6Y, AMr6B	Annealed	10	5
А7, А6, А5, А0 АД0, АД1, АД, АД00, АМи, АМиС, Д12	Semi cold-worked	5	
AMr2, AMr3		5	2
АМи, АМиС	Cold-worked	5	
AMr2		5	5
AB	Hardened and aged under	5	
Д16А, Д16Б, Д16У, Д16, 1915, В95А	conditions T and T1	10	5
Д16А, Д16Б, Д16	Cold-worked after hardening and natural aging.	10	5

4.5 -4.7. (Amended edition, Amendment № 2)

4.8. For checking sheets to absence of overburning, manufacturing plant selects one sheet from each charge of heat treatment.

Checking to absence of overburning of sheets, which passed hardening in tape, is conducted in two samples from each roll (beginning and end of roll).

Checking to absence of overburning of sheets, which passed hardening per sheet, is subjected each hundredth sheet, but not less than one sheet from batch.

(Introduced additionally, Amendment № 2).

- 4.9. (Deleted, Amendment № 1).
- 4.10. Sheets, whose heat treatment was conducted in niter baths, are checked for presence of saltpeter on surface.
 - For inspection, selected by 1% of sheets from batch, but not less than one sheet.
- 4.11. In obtaining of unsatisfactory results of testing mechanical properties at least on one of the characteristics,

repeated tests on doubled quantity of samples, cut out from same sheets, are conducted. During unsatisfactory results of repeated tests, piece test is permitted, whose result is final.

(Amended edition, Amendment № 1, 3).

5. METHODS FOR TESTING

5.1. Inspection of surface of sheets and detection of stratifications is conducted without application of magnifying tools.

Depth of overlap of defects is measured with profilometer according to GOST 19300 -86 or with depth indicator (special) on technical-normative documentation.

Inspection of surface finish is conducted by profilometer - profilograph according to GOST 19300 -86.

(Amended edition, Amendment № 1, 3).

5.2. Measurement of dimension is carried out with measuring tool, which ensures necessary accuracy of measurement.

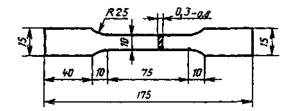
Measurement of thickness of sheets is produced at distance not less than 115 mm from angles and not less than 25 mm from edges of sheet.

Measurement of thickness of sheets is conducted by micrometer according to GOST 6507 - 90. Measurement of width and length of sheets is conducted by metallic gauge tape according to GOST 7502 -89.

Slant of cut are measured in conformity with GOST 26877 -91 by measuring rod according to GOST 427 -75 and square according to GOST 3749 -77 or by goniometer according to GOST 5378 -88.

(Amended edition, Amendment N_2 2, 3).

- 5.3. Selection and preparation of samples for determination of chemical composition of sheets is conducted according to GOST 24231 -80. Determination of chemical composition of aluminium are carried out according to GOST 25086 -87, GOST 12697.1-77 -GOST 12697.12-77 or by spectral method according to GOST 3221 -85, aluminium alloys according to GOST 11739.1 -90, GOST 11739.2 -90, GOST 11739.3 -82, GOST 11739.4 90, GOST 11739.5 -90, GOST 11739.6 -82, GOST 11739.7 -82, GOST 11739.8-90 -GOST: 11739.10-90, GOST 11739.1682 GOST 11739.15-82, GOST 11739.16-90 -GOST 11739.19-90, GOST 11739.20 -82, GOST 11739.21 -90, GOST 11739.22 -90, GOST 11739.23 -82 GOST 11739.24 -82 or by spectral method according to GOST 7727 -81.
- 5.4. Sampling for mechanical tests is conducted according to GOST 24047 -80.


Testing for tension of sheets with thickness of more than 0.8 to 2.5 mm is conducted according to GOST 11701 -84 on proportional flat samples

of types I or II with $b_0 = 20$ mm, and sheets with thickness from 3.0 to 10.5 mm are carried out according to GOST 1497 -84 in proportional flat samples of types I or II.

Calculated length of sample (l_0) in millimeters is calculated according to formula $l_0=11.3\sqrt{F_0}$,

where F_0 - calculated area of sample, mm².

Form and dimensions of samples, cut out for tensile test from sheets with thickness from 0.3 to 0.8 mm, should correspond to those indicated on drawing.

One sample across direction of rolling is cut out for tensile test from each inspected sheet.

5.3; 5.4. (Amended edition, Amendment № 2)

5.4.1. Determination of macro-crystalline structure (grain size) on sheets made of alloy of grade of AMμ is conducted in one sample, which is tested for tension, selected from each roll. During tension of sample on its surface, surface finish appears, whose permissibility is determined by standard, given in annexure 1 or that agreed between customer and manufacturer.

(Introduced additionally, Amendment № 1).

5.5. Measurement of deviation from planeness of sheets is conducted on inspection plate as per HTД.

Deviation from planeness (undulation and deflection) is determined by maximum distance between plane of arrangement of sheet and inspection plate being adjacent on plane. Measurements is conducted by one of methods, indicated in GOST 26877 -91 with help of metallic scales according to GOST 8026 -92 and GOST 427 -75.

Convexity of sheet (height and length of snap) is determined using procedure of manufacturing plant.

(Amended edition, Amendment No 2).

5.6. For checking of presence of saltpeter, drop of solution of 0.5 % diphenylamines is brought to surface of sheet in concentrated

of sulphuric acid (10 cm³ of distilled water and 25 cm³ of sulphuric acid, density 1.84 gm/cm³ is poured to suspension 0.5 g of diphenylamine).

After dissolution of diphenylamine, volume of solution is led up to 100 cm³ by addition of sulphuric acid.

Intensive turning blue of drop of solution after 10 -15 s indicates presence of saltpeter in this place.

After testing drop is moved away by filter paper, and tested section is thoroughly washed in water and wiped dry.

During detection of traces of saltpeter, batch of sheets are subject to repeated washing and repeated inspection to presence of saltpeter on surface of sheets.

5.7. Microstructure of sheets is checked by metallographic method in one sample or by eddycurrent method using procedure of manufacturing plant.

In arbitration cases, testing is conducted by metallographic method.

(Introduced additionally, Amendment № 2).

6. MARKING, PACKING, TRANSPORTATION AND STORAGE

6.1. On one of sides at distance not more than 30 mm from edge on width or from edge of short side, sheet should be knocked out or substituted by paint: grade of aluminium or aluminium alloy, plating, state of material, thickness of sheet, batch number and stamp of quality control. Delivery of sheets without marking is permitted on demand of customer.

It is permitted to mark only upper sheet of pile or bundle during transportation of sheets with thickness of less than 1.0 mm.

(Amended edition, Amendment № 1, 3).

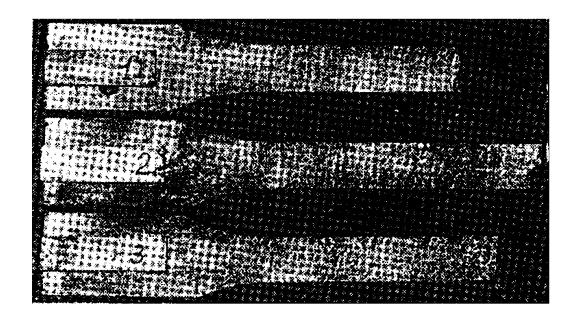
6.1.1. Marking of sheet is conducted in conformity with order-schedule of foreign trade association, meant for export.

(Introduced additionally, Amendment № 3).

6.2. According to agreement between manufacturer and customer on one side of surface of sheets, line marking with indication of grade of aluminium or aluminium alloy, platings, states of material and thickness of sheet with intervals between lines not more than 1500 mm is brought instead of marking. For marking of sheets, quick-drying paints are used as per HTД.

Page 33	GOST	21631	-76
---------	-------------	-------	-----

6.3. Temporary corrosion protection, packing, transportation and storage - according to GOST 9.011 -79.


Transport marking of containers - according to GOST 14192 -77 with putting of additional inscriptions: name of semi-finished products, grade of alloy, state of material, dimensions of sheets, batch number.

(Amended edition, Amendment № 2).

6.4. (Deleted, Amendment № 1).

ANNEXURE 1 Required

Macro-crystalline structure of sheets made of aluminium alloy of grade Amц (type 1, 2, 3) is permitted

ANNEXURE 2
Required

Required

Table 1

4,114 4,686 5,200 6,286 7,829 9,543 10,657 13,428 16,143 16,143 18,971 27,486 33,098 33,098 38,791 2,013 2,447 3,339 3,797 4,185 6,290 7,652 8,119 8,119 10,772 1800 Theoretical weight of 1 m sheet, kg, with normal manufacturing precision on thickness and width 1600 1,887 2,295 3,131 3,560 3,925 6,327 7,184 7,184 10,101 12,139 16,530 22,635 22,635 22,635 1500 2.180 2.588 2.5588 3,383 3,383 7,29 7,621 13,568 13,568 13,568 13,568 13,568 13,568 13,568 13,568 13,638 13,638 13,638 13,638 1425 mm 1,762 2,923 3,324 3,324 3,324 5,506 6,707 6,707 11,332 17,296 17,296 17,296 17,296 17,296 17,296 17,296 17,296 17,296 1400 Width of sheet, 2,1,851 2,198 3,1854 3,1858 8,454 6,456 19,943 18,308 19,943 18,553 18,553 18,553 18,553 1200 0.715 1,288 1,288 1,288 1,288 2,417 2,400 6,496 6,796 6,796 6,796 11,016 11,016 11,016 11,016 11,016 11,016 11,016 1000 0,670 0,928 1,185 1,937 1,937 1,937 1,937 1,937 1,538 1,207 1,207 1,207 1,558 006 0,596 0, 800 0,646 0,0473 0,0646 11,153 11,535 11, 009 Thickness of sheet, mm

Continuation of Table 1

		2000	41,652 44,398 47,259 50,091 52,951 55,783 58,644
vıdth		1800	37,502 39,975 42,550 45,100 47,676 50,226 52,802
ess and v		1600	33 375 37 35 574 39 37 865 42 40 133 45 42 424 47 44 668 50 46 959 52
I m sheet, kg, with normal manufacturing precision on thickness and width		1500	31 299 33 361 35 510 37,636 39,784 41 890 44 038
uring precisi		1425	29,742 31,702 33,743 35,764 37,805 39,806 41,847
nal manutact	Width of sheet, mm	1400	29,223 31,148 33,154 35,140 37,145 39,111
g, with norm	Width o	1200	25 088 26 739 28 460 30,164 31,884 33,553
I m sneet, k		1000	20 930 22 292 23 725 25 159 26 592 27 954 29 388
heoretical weight of		006	18,849 20,076 21,367 22,658 23,949 25,175 26,467
I neoretic		800	16,769 17,860 19,009 10,157 21,306 22,397 23,545
		009	12,694 13,515 14,378 15,242 16,105 16,105 17,789
[hickness]	of sheet,	mm	7,8,8,9,0,0,0 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

(Amended edition, Amendment Nº 3).

Continuation of Table 1

Theoretical weight of 1 m sheet kg with normal manufacturing precision on thickness and width	Width of sheet, mm	900 1000 1200 1400 1425 1500 1600 1800 2000	— — — — — 89°C 969°C	0.953	1.9.1 1.3.16 1.545 1.802 1.834 1.930 1.2	2 887 0 100 0 081 0 088 1 721 1 887 1.	7 737 0 0030 0030 0000 0001	1,100 1,000 2,202 2,000 2,023 2,101 2,000 1,101 1,000 1,101 1,000 1,101 1,000 1,101 1,000 1,101 1,000 1,101 1,000 1,101	1,302	2,190 2,432 2,580 3,504 3,423 3,603	2,422 2,036 3,134 3,134 3,130 4,222 4,133	2,937 3,262 3,881 4,505	3,684 4,092 4,642 3,000 5,700 6,000 0,404 6,033	3,942 4,378 5,186 5,966 6,072 6,391 0,010 7,013	4,431 4,922 5,838 6,767 6,888 7,249 (,,/30) 6,042	4,689 5,208 6,182 7,168 7,295 7,678 8,188 9,151	4,947 5,494 6,525 7,528 7,662 8,064 8,500 9,545	6,209 6,896 8,208 9,490 9,659 10,166 110,841112,140	7,472 8,298 9,856 11,452 11,656 12,267 13,082 14,584	8,734 9,700 11,539 13,414 13,653 14,369 15,324 17,130	9,996 11,102 13,188 15,336 15,609 16,428 17,51919,577	11,259 12,504 14,870 17,338 17,647 18,572 119,807[22,249]	12,496 13,878 16,587	13,814 15,310 18,343 21,361 21,740 22,878 24,396 27,405	[15.04] [16,658 [19,994 23,266 23,679 24,919 [26,572 29,852]	16,332 18,091 21,715 25,272 25,721 27,067 28,863 32,428	17,623 19,525 23,401 27,257 27,741 29,194 31,130 34,978	18,914 20,959 25,122 29,263 29,783 31,342 33,421 37,554 41	20,140 22,335 26,744 31,188 31,742 33,404 35,620 40,026 44	21,431 23.768 28,495 33,194 33,784 35,553 37,911 42,602 47	22,722 25,202 30,198 35,180 35,805 37,679 40 179,45,152	24,014 26,635 31,919 37,185 37,846 39,827 (42,469(47,727) 53	25,240 27,983 33,588 39,151 39,846 41,933 44,714 50,277	26.531 29.416 35.309 41.157 41.888 44.081 (47.005)52,853 58
of 1 m			10									<u> </u>					.—.									~							~~~	
Theoreti		800	0.619					710.1						_						-, -						_						21,363		
200	of sheet,	mm = 009	0.3 0.482	*1	· · ·		٦.٢		000			~		۰	~ oc	 ന		<i></i>	_ o	<u>۔</u>	ó		~ o	٠. 		<u>ح</u>	ــــ ټ	ري دي	<u>۔</u>	υς.	<u>-</u>	9,5 16,122	<u> </u>	ı.

(Amended edition, Amendment Nº 2, 3).

Table 2a		2000	11	1 1	4,167	4,738	6,336	7,878 8,449	9,590	10,161	13,472	19,009	21,835	24,689	27,515	1	-	1	1	1	
and width		1800	1 1	īſ	3,751	4,265	5,704	7,605	8,633	9,147 9,635	12,127	14,568	19,655	22,224	24,768	1	ſ	ſ	[1	
hickness		1600	1 1 6	2,490	3,381	ಬ 4	TO a	၁ယ	\sim $^{\circ}$	XD XX	\bigcirc	2000 2000 2000 2000 2000 2000 2000 200	~	တော့	다 <u>.</u> 장	1	1	}	1	1	
sion on t		1500	4 1	2,335	3,170	ი ი ი ი ი ი	4,819	6,382	7,239	8 / 8 053 053	10,152	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	406	548	899	1	1	1]	1	
with increased manufacturing precision on thickness		1425	1 15	1,831 2,218	2,625 3,012	3,419 3,765	4,579	5,098 6,064	6,878	7,285	9,645	13,640	15,587	17,622	19,637	1	1	1	1	1	
sed mannfac	of sheet, mm	1400	1 1	2,179	2,579 2,959	3,359	4,498	5,958 5,958	6,758	7,157	9,477	11,436	15,314	17,314	19,293	1	1	,	ļ	1	
		1200	1,200	1,886	2,229 2,537	2,880	3,874	5,177	5,829	6,171	8,194	1.520	13,166	14,846	16,560]		1	1	ı	
1 m sheet kσ		1000	0,758	1,572	1,858 2,144	2,430	3,259	4,374	4,917	5,203 5,488	6,889	8,290 9,690	190,11	12,492	13,864	15,295	16,641	18,073	19,506	20,938	-
pht of		006	0,695	1,210	1,699 1,930	2,188	2,934	3,938	4,427	4,684 4,941	6,202	7,463	9,985	11,246	12,482	13,799	15,024	16,314	17,603	18,893	
Theoretical wei		800	0,618	1,282	1,510 1,716	1,945	2,609	3,501	3,936	4;165 4,394	5,515	6,637	8,880	100.01	11,099	12,274	13,364	14,511	15,658	16,805	
		009	0,481	0,988	1,160	1,495 1,650	1,994	2,492	3,007	3,351	4,193	5,035	6,720	7,562	8,387	9,276	10,104	10,966	11,828	12,690	
Thiotra	of sheet,	mm	0,0 4,0	၀၀	0,7 8,0	6,0	201		1.8	0,1 0,0	2,5	တ် လ တ လ	9,4	4,5	٠ ئ ټ	5,5	0,9	6,5	7,0	7,5	

Continuation

Commandi			2000	11111
	and width		1800	11111
	hickness		1600	11111
	sion on t		1425 1500 1600	
	sturing preci		1425	11111
	sed manufac	Width of sheet, mm	1400	11111
	, with increa	Width c	1200	11111
	m sheet, kg, with increased manufacturing precision on thickness and width		1000	22,313 23,745 25,177 26,609 27,955 29,387
	heoretical weight of 1		006	20 118 21 408 22 697 23 987 25 212 26 502
	Theoretica		800	17,895 19,042 20,189 21,337 22,426 23,573
			009	13,509 14,372 15,234 16,096 16,915 17,777
	Thickness	of sheet,	mm	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

			i	
able 20	n widtn		2000	4,110
, , , , , , , , , , , , , , , , , , , ,	accuracy of		1800	3,700
70000	ncreased		1600	2,010 2,444 2,901 3,335
	ness and		1500	1,885 2,292 2,720 3,127
10:4+ 00 00	on on unck		1425	1,791 2,177 2,584 2,971
	uring precisi	Width of sheet, mm	1400	2,139 2,539 2,919
to of moon food	iai manulaci	Width of	1200	1,166 1,509 1,851 2,194 2,520
24 44 KYYY 20	kg, with normal manufacturing precision on thickness and increased accuracy on width		1000	0.715 1,000 1,286 1,544 1,829 2,115
	_		006	0,669 0,926 1,184 1,415 1,673 1,904
to tale icus los	neoretical weight of 1 m sneet,		800	0,595 0,824 1,053 1,259 1,694
Those 25	Heorette		009	0,473 0,644 0,816 0,980 1,151 1,306
,	Thickness	of sheet,	mm	0.3 0,4 0,5 0,6 0,7 0,8

Continuation

of sheet,			•		Width	Width of sheet, mm				Width of sheet, mm	
mm	009	800	006	1000	1200	1400	1425	1500	1600	1800	2000
6.0	1 478	1,922	2,162	2,401	2,863	3,319	3,378	3,555	က်	4,214	4,681
0.	1,633	2,117	2,381	2,644	3,154	3,659	3,724	3,919	4	4,676	5,195
27	1,976	2,575	2,895	3,216	3,840	4,458	4,538	4,776	5,094	5,652	6,279
5.5	2,449	3,204	3 603	4,002	4,766	5,498	5,596	5,890	တ်	7,040	7,821
1.6	2,621	3,433	3,860	4,288	5,100	5,898	6,003	6,318	တ်၊	7.554	8,392
8.	2,964	3,891	4,375	4,860	5,794	869'9	6,817	7,175	_	8,581	9,533
1.9	3,136	4,119	4,632	5,145	6,137	7,007	7,224	7,603	8,109	9,095	10,10
20	3,308	4,348	4,890	5,431	6,446	7,477	7,611	8,010	ထ်	9,583	10,646
2.5	4 125	5,435	6,112	6,789	8,091	9,417	9,584	880,01		12,076	13,415
9	4.941	6,522	7,335	8,147	9,77.1	11,316	11,518	CA.	27.	14,516	16,127
3,5	50 2000	7,667	8,621	9,576	11,451	13,295	13,532	14,243	رير	17,060	18,952
4.0	6 659	8,811	806,6	11,005	13,114	15,274	15,547	200	~	19,604	21,778
4.5	7,919	9,955	141 195	12,435	14,828	17,274	17,582	505	ິ	22,173	24,632
5,0	8 335	11,042	12417	13,793	16,526	19,253	19,596	629	866,12	24,716	17,458
ນີ້	9 225	12,217	13,735	15,252	ì	ł	1	1	1	1	
0.0	10 087	13,307	14 960	16,613	1	1	1	l	j	1	1
6,5	110 949	14,454	16,249	18,045	1	1	1		[1	1
7.0	11,811	15,601	17 539	19,477]	1	ſ	1	{	1	[
7.5	12,673	16,748	18 829	20,909	1	ļ	1	1	1	1	1
80	13 492	17,838	20.054	22,270	1	\ 	1		}	1	1
8.5	14 354	18,985	21 343	23,702	1	1	1	1	})	
0.6	15 217	20,132	22,633	25,134	1		!	1	1	ľ	1
9.5	16 0.79	21.279	23,923	26,566]	1	1		1	ſ	1
10.0	16 898	22,369	25 148	27,926	1	1	1	1		1	
L	71 700	01100	107 00	020 000	_			1	1		

Table 2a, 26 (Introduced additionally, Amendment Nº 3).

(•)
	đ)
	c	5
	σ	
ŀ	-	4

1		ı														
I auto o	r3, Amr5,		2000	28.571	31,468	34,328	37,189	40,050	42,910	45,771	48,632	51,492	54,353	57.214	60 074	
	s of AMı		1800	27,721	28,333	30,908	33,484	36,060	38,635	41,211	43,787	46,362	48,938	51,514	54,089	
	of grade		1600	22 871	25 198 28	27 488	29,779	32,070	34,360	36,651	38,942	41,232	43,523	45,814	18,104	
	nade of alloy		1500	446	23,630	778	956	075	223	371	519	299	816	964	142	
	t treatment n		1425	20.378	22 454	24 496	26,537	28 578	30 620	32 661	34 702	36 744	38 785	40 826	42 868	
	without heat AMr6		1400	20.021	22,063	24,068	26,074	28,080	30,085	32,091	34,097	36,1102	38,108	40.114	42,119	
	nealed also		1200	17.171	18,928	20,648	22,369	24,090	25,810	27,531	29,252	30,972	32,693	34,414	36,134	_
	t, into kg, an		1000	14,307	15,769	17,203	18,636	20,070	21,503	22,937	24,370	25,804	27,237	28,671	30,105	
	Theoretical weight of 1 mm sheet, into kg, annealed also without heat treatment made of alloy of grades of AMr3, Amr5, Amr5,		006	12,882	14,202	15,493	16,784	18,075	19,366	20,657	21,948	23,239	24,530	25,821	27,112	
	cal weight o	eet, mm	800	11 457		13 783	14 931	16.080	17 228	18377	19 525	20 674	21 822	22 971	24 120	
	Theoreti	Width of sheet, mm	009	8,605	9,499	10,363	11,226	12,090	12,953	13,817	14,680	15,544	16 407	17 271	18 135	
	Thickness	ot sheet,	ППП	5,0	5,5	6.0	6,5	7.0	7,5	8,0	8,5	0.6	9,5	10.0	10,5	

ANNEXURE 3

Reference

Conversion factors for enumerating theoretical weight of 1 m sheet made of aluminium and aluminium alloys

Grade of alloy	Conversion factor	Grade of alloy	By shift coefficient
Aluminium of all grades	0.950	Aluminium alloys of grades:	
		Д12	0,954
Aluminium alloys of grades:		АМц, АМцС, ММ	0,958
AMr6	0.926	AKM	0,970
AMr5	0,930	1915	0,972
AMr3	0,937	Д16	0,976
АМг2	0,940	ді, вді	0,982
AB	0.947		

(Introduced Additionally, Amendment № 2).

INFORMATION DATA

- 1. APPROVED AND PUT INTO OPERATION by decision of State Committee of norms of Council of Ministers USSR dated 12.03.76 № 607
- 2. SUPERSEDES GOST 12592 67, besides sub-point 5.3 -6.9; GOST 13722 68, besides sub-points 5.3 -5.11
- 3. REFERENCE TECHNICAL-NORMATIVE DOCUMENTS

Code of HTД, reference of which is given	Point number
GOST 9.011—79 GOST 427—75 GOST 1491—76 GOST 1497—84 GOST 2789—73 GOST 3221—85 GOST 3749—77 GOST 4784—74 GOST 5009—82 GOST 5578—88 GOST 6507—90 GOST 7502—89 GOST 7727—81 GOST 8026—92 GOST 11701—84 GOST 11701—84 GOST 11739.1—90 GOST 11739.3—82 GOST 11739.5—90 GOST 11739.6—82 GOST 11739.6—82 GOST 11739.1—82 GOST 11739.1—82 GOST 11739.1—82 GOST 11739.1—90 GOST 11739.20—82 GOST 11739.21—90 GOST 11739.22—90 GOST 11739.23—82 GOST 11739.23—82 GOST 11739.24—82	6.3 5.2; 5.5 3.1,1 5.4 3.8; 3.9; 3.10 5.3 5.2 3.1.1 3.12 5.2 5.2 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3

Continuation

Code of HTД, reference of which is given	Point number
GOST 12697.1-77- GOST 12697.12-77	5.3
GOST 14192 -77	6.3
GOST 19900 -86	5.1
GOST 24047-80	5.4
GOST 24231-80	5.3
GOST 25686- 87	5.3
GOST 26877 -91	5.27, 5.5

- 4. Limitation of period of effect is taken on resolution of Intergovernmental council for standardization, metrology and certification (protocol 3 -93 dated 17.02.93)
- 5. REPRINTED (April 1993) with Amendments № 1, 2, 3, approved in May 1982, January 1987, June 1988 (ИУС9 82, 4 87, 11 -88).