

Technical Specifications GOST 4543 – 71

FORREFERENCEONLY

Translated by:

M/s SWYAZ

2/453, Virain Khand, Gomti Nagar

Lucknow - 226016

■: 0522-3098139 / 2345145

Visit us:

http\\.www.sw;uz.com

Group B32

STATE STANDARD OF USSR

STRUCTURAL ALLOY STEEL BARS

Technical specifications

GOST 4543-71

ОКП 09 5040

Effective period from: 01.01.73

Non - observance of standard is dealt as per rules

This standard pertains to hot rolled, forged bar of structural alloy steels with diameter or thickness upto 250 mm, calibrated and with special surface finish, to be used in heat treated conditions.

As far as norms of chemical composition, the standard pertains to all the other types of rolled stocks, ingots, forgings and stampings. (Amended edition, Amendment No. 1, 2, 4, 5)

1. CLASSIFICATION

1.1 Depending upon the chemical composition and properties, structural steel is divided into following categories:

Quality;

High quality - A;

Very high quality - III.

Note: -

- 1. The steel of electro slag re-melting belongs to very high quality steel.
 - 2. (Deleted, Amendment No. 2)
- 1.2 Depending upon the main alloying elements, steel is divided into following groups:

Chromium, manganese, chromium-manganese, chromium-silicon, chromium-molybdenum, chromium-molybdenum-vanadium, chromium-vanadium, nickel-molybdenum, chromium-nickel and chromium-nickel with boron, chromium-silicon-manganese, and chromium-silicon-manganese-nickel, chromium-manganese nickel and chromium-manganese-nickel with titanium and boron, chromium-nickel-molybdenum,

Chromium-nickel-molybdenum-vanadium and chromium-nickel-vanadium, chromium-aluminium and chromium-aluminium with molybdenum, chromium-manganese-nickel with molybdenum and titanium.

(Amended addition, Amendment No. 3)

1.3 As per the types of processing, the rolled stock is divided as follows: hot rolled and forged (including with turned or roughened surfaces): calibrated;

with special surface finish.

1.4 Depending upon the surface quality, the hot rolled and forged stock is divided into following groups: 1, 2, 3

1.5 According to condition of materials, rolled stock is manufactured: without heat treatment;

heat treatment - T;

cold worked - H (for calibrated and with special surface finish of rolled stock). 1.3 - 1.5. (Amended edition, Amendment No. 5).

2a. Assortment

2a.1. Assortment of rolled stock should correspond to the requirements of GOST 2591-88, GOST 2590-88, GOST 2879-88, GOST 103-76, GOST 1133-71, GOST 7417-75, GOST 8559-75; GOST 8560-78, GOST 14955-77 and other standard technical documents.

(Amended edition, Amendment No. 5).

Example of conventional designation:

Hot rolled stock, square, having side of square 46 mm, normal accuracy of rolling B as per GOST 2591 – 88, grade 18XIT, surface quality of group 2, heat treated T:

As well as, round having diameter 80 mm, normal accuracy of rolling B as per GOST 2590 – 88, grade 18X2H4MA, surface quality of group 1, mechanical properties of make 2, heat treated T:

As well as, strip having thickness 20 mm, width 75 mm as per GOST 103 - 76, grade 25XIT, surface quality of group 3, mechanical properties of make 1, without heat treatment:

Strip
$$\frac{20X75\,GOST\,103-76}{25X\Gamma\Gamma-3-1\,GOST\,4543-71}$$

Calibrated rolling stock, round having diameter 15 mm, with limit deviation as per h11 according to GOST 7417 – 75, grade 40XH2MA, surface quality of group B as per GOST 1051 – 73, with checking of mechanical properties M, cold worked H:

$$\frac{15 - h11\,GOST\,7417 - 75}{40XH2MA - 5 - M - H\,GOST\,4543 - 71}$$

Rolling stock with special surface finish, round having diameter 8.5 mm with limit deviations as per h9 and surface quality of group B as per GOST 14955–77, Grade 12XH3A with standardized hardenability Π , heat treatment T:

Round
$$\frac{8.5 - \text{h9 GOST 14955} - 77}{12 \text{XH3A} - \text{B} - \Pi - \text{T GOST 4543} - 71}$$

(Amended edition, Amendment No. 5).

2. TECHNICAL REQUIREMENTS

2.1 Structural alloy steel rolled stocks are manufactured inconformity with requirement of present standard according to production schedules, approved in established order.

(Amended edition, Amendment No. 5)

- 2.2 Grade and chemical composition of steel should correspond to those specified in table.1.
- 2.3 Mass fraction of phosphorous, sulphur, residues of copper, nickel and chromium in steel of all grades should not exceed the norms, specified in table.2.

-		_		
THE R				্ৰ
	•	n	60	- 1
	65	₩.	-	

Group of	Grade of				Mass	fraction of	elements, %			
steel	steel	Carbon	Silicon	Manganese	Chromium	Nickel	Molybdenum	Aluminium	Titanium	Vanadium
Chromium	15X	0.12-0.18	0.17-0.37	0.40-0.70	0.70-1.00	-	-	-	-	-
	15XA	0.12-0.17	0.17-0.37	0.40-0.70	0.70-1.00		-	-	-	-
eda-	20X	0.17-0.23	0.17-0.37	0.50-0.80	0.70-1.00	-	-	-	-	-
	30X	0.24-0.32	0.17-0.37	0.50-0.80	0.80-1.10	-	-	-	_	-
	30XPA	0.27-0.33	0.17-0.37	0.50-0.80	1.00-1.30	_	-	-	-	_
	35X	0.31-0.39	0.17-0.37	0.50-0.80	0.80-1.10	-	-	-	_	-
	38XA	0.35-0.42	0.17-0.37	0.50-0.80	0.80-1.10	-	-1		_	-
	40X	0.36-0.44	0.17-0.37	0.50-0.80	0.80-1.10	-	-	-	-	-
	45X	0.41-0.49	0.17-0.37	0.50-0.80	0.80-1.10	-	-	-	-	-
	50X	0.46-0.54	0.17-0.37	0.50-0.80	0.80-1.10	-	-	-	-	-
Manganese	15Г	0.12-0.19	0.17-0.37	0.70-1.00	-	-	-	-	-	-
	20Γ	0.17-0.24	0.17-0.37	0.70-1.00		-	-	-	-	-
	25Γ	0.22-0.30	0.17-0.37	0.70-1.00	-	-	-	-	1 =	-
	30Г	0.27-0.35	0.17-0.37	0.70-1.00	-	_	_	_	-	-

Group of	Grade of											
steel	steel	Carbon	Silicon	Manganese	Chromium	Nickel	Molybdenum	Aluminium	Titanium	Vanadium		
Manganese	35Г	0.32-0.40	0.17-0.37	0.70-1.00	-	_	-	-	-	-		
	40Γ, 40ΓP	0.37-0.45	0.17-0.37	0.70-1.00	-	-	24	-	-	-		
	45Γ	0.42-0.50	0.17-0.37	0.70-1.00	-	-	-	-	-	-		
	50Γ	0.48-0.56	0.17-0.37	0.70-1.00	-	-	-	-	-	-		
	10Γ2	0.07-0.15	0.17-0.37	1.20-1.60	-	_	-		-	-		
	30Г2	0.26-0.35	0.17-0.37	1.40-1.80	-	-	-	-	-	-		
	35Г2	0.31-0.39	0.17-0.37	1.40-1.80	-	-		-	-	-		
	40Г2	0.36-0.44	0.17-0.37	1.40-1.80	-	-	-	-	-	-		
	45Г2	0.41-0.49	0.17-0.37	1.40-1.80	- 1	-		-	-	-		
	50T2	0.46-0.55	0.17-0.37	1.40-1.80		-	_	-	-	-		
	471T	0.44-0.52	0.10-0.22	0.90-1.20		_		_	0.06-0.12	-		
Chromium-	18XI	0.15-0.21	0.17-0.37	0.90-1.20	0.90-1.20	-	-	-	-	-		
Manganese	18XIT	0.17-0.23	0.17-0.37	0.80-1.10	1.00-1.30	-	-	-	0.03-0.09	-		
	20ХГР	0.18-0.24	0.17-0.37	0.70-1.00	0.75-1.05	, -	-	-	_	-		

GOST 4543-71 Page 6

~			
1 '01	111111	CHANT	table
CUI	шши	auon	laule

Group of	Grade				Mass fra	action of el	ements, %			
steel	of steel	Carbon	Silicon	Manganese	Chromium	Nickel	Molybdenu m	Aluminium	Titanium	Vanadiu m
	27XITP	0.25-0.31	0.17-0.37	0.70-1.00	0.70-1.00	-	_	-	_	_
Chromium-	25XIT	0.22-0.29	0.17-0.37	0.80-1.10	1.00-1.30	_	-	-	0.03-0.09	-
manganese	30XIT	0.24-0.32	0.17-0.37	0.80-1.10	1.00-1.30	-	-		0.03-0.09	-
	40XITP	0.38-0.45	0.17-0.37	0.80-1.00	0.80-1.10	-	-	-	0.03-0.09	-
	25ХГМ	0.23-0.29	0.17-0.37	0.90-1.20	0.90-1.20	_	0.20-0.30	-	-	-
	38ХГМ	0.34-0.40	0.17-0.37	0.60-0.90	0.80-1.10	_	0.15-0.25	-	_	-
Chrome-	33XC	0.29-0.37	1.0-14	0.30-0.60	1.30-1.60		=	_	-	-
silicon	38XC	0.34-0.42	1.0-1.4	0.30-0.60	1.30-1.60	-	-	1-1	_	_
	40XC	0.37-0.45	1.2-1.6	0.30-0.60	1.30-1.60	_	_	-	-	_
Chrome-	15XM	0.11-0.18	0.17-0.37	0.40-0.70	0.80-1.10	-	0.40-0.55	-	-	,—,
molybdenum and chrome-	20XM	0.15-0.25	0.17-0.37	0.40-0.70	0.89-1.10	-	0.15-0.25	-	-	_
molybdenum- vanadium	30XM	0.26-0.34	0.17-0.37	0.40-0.70	0.80-1.10	-	0.15-0.25	-	-	-

GOST 4543-71 Page 7

	Grade of				Mas	s fraction o	of elements, %			
Group of steel	steel	Carbon	Silicon	Manganese	Chromium	Nickel	Molybdenum	Aluminium	Titanium	Vanadium
Chrome-	30XMA	0.26-0.33	0.17-0.37	0.40-0.70	0.80-1.10	_	0.15-0.25	-	-	1-1
molybdenum and chrome-	35XM	0.32-0.40	0.17-0.37	0.40-0.70	0.80-1.10	-	0.15-0.25	-	-	-
molybdenum-	38XM	0.35-0.42	0.17-0.37	0.35-0.65	0.90-1.30	-	0.20-0.30	-	-	-
vanadium	30Х3МФ	0.27-0.34	0.17-0.37	0.30-0.60	2.30-2.70	-	0.20-0.30		-	0.06-0.12
	40ХМФА	0.37-0.44	0.17-0.37	0.40-0.70	0.80-1.10	-	0.20-0.30	-	-	0.10-0.18
Chrome-	15ХФ	0.12-0.18	0.17-0.37	0.40-0.70	0.80-1.10	-	-	-	-	0.06-0.12
vanadium	4 0ХФА	0.37-0.44	0.17-0.37	0.50-0.80	0.80-1.10	_	-	-	-	0.10-0.18
Nickel- molybdenum	15H2M (15HM)	0.10-0.18	0.17-0.37	0.40-0.70	-	1.50- 1.90	0.20-0.30	-	-	-
	20H2M (20HM)	0.17-0.25	0.17-0.37	0.40-0.70	-	1.50- 1.90	0.20-0.30	Ē	-	_
Chrome-nickel and chrome-	12XH	0.09-0.15	0.17-0.37	0.30-0.60	0.40-0.70	0.50- 0.80	-	-	-	-
nickel with boron	20XH	0.17-0.23	0.17-0.37	0.40-0.70	0.45-0.75	1.00- 1.40	-	-	-	-
	40XH	0.36- 0.44	0.17- 0.37	0.50-0.80	0.45-0.75	1.00- 1.40	-	-	=	-

Group of steel	Grade of				Mas	s fraction of	elements, %			
Group or steer	steel	Carbon	Silicon	Manganese	Chromium	Nickel	Molybdenum	Aluminium	Titanium	Vanadium
Chrome-nickel	45XH	0.41-0.49	0.17-0.37	0.50-0.80	0.45-0.75	1.00-1.40	-		_	_
and chrome- nickel with boron	50XH	0.46-0.54	0.17-0.37	0.50-0.80	0.45-0.75	1. 0 0- 1. 4 0	-	-	-	-
БОГОП	20XP	0.16-0.23	0.17-0.37	0.60-0.90	0.70-1.10	0.80- 1.10	-	-	-	-
	12XH2	0.09-0.16	0.17-0.37	0.30-0.60	0.60-0.90	1.50- 1.90	-	-	-	-
	12XH3A	0.09-0.16	0.17-0.37	0.30-0.60	0.60-0.90	2.75- 3.15	-	-	-	-
	20XH3A	0.17-0.24	0.17-0.37	0.30-0.60	0.60-0.90	2.75- 3.15	-		-	-
	30XH3A	0.27-0.33	0.17-0.37	0.30-0.60	0.60-0.90	2.75- 3.15	-	-	-	-
	12X2H4A	0.09-0.15	0.17-0.37	0.30-0.60	1.25-1.65	3.25- 3.65	-	-	-	-
	20X2H4A	0.16-0.22	0.17-0.37	0.30-0.60	1.25-1.65	3.25- 3.65	-	-	-	-
Chrome-silicon-	20XTCA	0.17-0.23	0.9-1.2	0.80-1.10	0.80-1.10	-	-	-	-	-
manganese and chrome-silicon-	25XTCA	0.22-0.28	0.9-1.2	0.80-1.10	0.80-1.10	-	-	_	-	-
manganese-	30XTC	0.28-0.35	0.9-1.2	0.80-1.10	0.80-1.10	-	-	-	_	-
nickel	30ХГСА	0.28-0.34	0.9-1.2	0.80-1.10	0.80-1.10	_	1-1	_	_	_

6 6 1	Grade of				Mas	s fraction o	of elements, %			
Group of steel	steel	Carbon	Silicon	Manganese	Chromium	Nickel	Molybdenum	Aluminium	Titanium	Vanadiun
Chrome-silicon- manganese and	35XTCA	0.32-0.39	1.1-1.4	0.80-1.10	1.10-1.40	1	-	-	-	-
chrome-silicon- manganese- nickel	30XI CH2A (30XI CHA)	0.27-0.34	0.9-1.2	1.00-1.30	0.90-1.20	1.4-1.8	-	-	-	-
Chrome- manganese	15XTH2TA (15XI'HTA)	0.13-0.18	0.17-0.37	0.70-1.00	0.70-1.00	1.4-1.8	-	-	0.03-0.09	-
nickel and chrome-	20ХГНР	0.16-0.23	0.17-0.37	0.70-1.00	0.70-1.10	0.80- 1.10	-	-	-	
manganese- nickel with titanium and	20XTHTP	0.18-0.24	0.17-0.37	0.80-1.10	0.40-0.70	0.40- 0.70	_		0.03-0.09	-
boron	38XI'H	0.35-0.43	0.17-0.37	0.80-1.10	0.50-0.80	0.70- 1.00	-	-	-	-
	14XJH	0.13-0.18	0.17-0.37	0.70-1.00	0.80-1.10	0.80- 1.10	_		-	-
	19XI'H	0.16-0.21	0.17-0.37	0.70-1.10	0.80-1.10	0.80- 1.10	-	-	-	-
Chrome- nickel-	20XH2M (20XHM)	0.15-0.22	0.17-0.37	0.40-0.70	0.40-0.60	1.6-2.0	0.20-0.30	-	-	-
molybdenum	30XH2MA (30XHMA)	0.27-0.34	0.17- 0.37	0.30-0.60	0.60-0.90	1.25- 1.65	0.20-0.30	::	-	-
	38X2H2MA (38XHMA)	0.33-0.40	6.17- 0.37	0.25-0.50	1.30-1.70	1.3-1.7	0.20-0.30	_	-	-

Group of steel	Grade of steel				M	ass fraction	of elements, %	y p		
Group or steer	Grade of swer	Carbon	Silicon	Manganese	Chromium	Nickel	Molybdenum	Aluminium	Titanium	Vanadium
Chrome- nickel molybdenum	40XH2MA (40XHMA)	0.37- 0.44	0.17- 0.37	0.50-0.80	0.60-0.90	1.25-1.65	0.15-0.25	-	-	-
	40X2H2MA (40X1HBA)	0.35- 0.42	0.17- 0.37	0.30-0.60	1.25-1.65	1.35- 1.75	0.20-0.30	-	_	-
- 1	38ХНЗМА	0.33- 0.40	0.17- 0.37	0.25-0.50	0.80-1.20	2.75- 3.25	0.20-0.30	- 1	-	
	18X2H4MA (18X2H4BA)	0.14- 0.20	0.17- 0.37	0.25-0.55	1.35-1.65	4.0-4.4	0.30-0.40	_	_	-
	25X2H4MA (25X2H4BA)	0.21- 0.28	0.17- 0.37	0.25-0.55	1.35-1.65	4.0-4.4	0.30-0.40		-	-
Chrome-nickel- molybdenum-	30XH2MФA (30XH2BФА)	0.27- 0.34	0.17- 0.37	0.30-0.60	0.60-0.90	2.0-2.4	0.20-0.30	-	-	0.10-0.18
vanadium and chrome-nickel-	36X2H2MФА (36XH1MФА)	0.33- 0.40	0.17- 0.37	0.25-0.50	1.30-1.70	1.30- 1.70	0.30-0.40	-	-	0.10-0.18
vanadium	38ХНЗМФА	0.33- 0.40	0.17- 0.37	0.25-0.50	1.20-1.50	3.0-3.5	0.35-0.45	-	-	0.10-0.18
	45XH2МФА	0.42- 0.50	0.17- 0.37	0.50-0.80	0.80-1.10	1.3-1.8	0.20-0.30	-	-	0.10-0.18
	(45ХМФА) 20ХН4ФА	0.17- 0.24	0.17- 0.37	0.25-0.55	0.70-1.10	3.75- 4.15	-	-	-	0.10-0.18
Chrome- aluminum and chrome- aluminum- molybdenum	38Х2МЮА (38ХМЮА)	0.35- 0.42	0.20- 0.45	0.30-0.60	1.35-1.65	-	0.15-0.25	0.7-1.1	-	-

	0 1 6 1	Mass fraction of elements, %										
Group of steel	Grade of steel	Carbon	Silicon	Manganese	Chromium	Nickel	Molybdenum	Aluminium	Titanium	Vanadium		
chrome- manganese-	20ХГНМ	0.18-0.23	0.17-0.37	0.70-1.10	0.40-0.70	0.40- 0.70	0.15-0.25	2	-	-		
nickel with molybdenum and titanium	40ХГНМ	0.37-0.43	0.17-0.37	0.50-0.80	0.60-0.90	0.70- 1.10	0.15-0.25	H	-	-		
and thantam	25ХГНМТ	0.23-0.29	0.17-0.37	0.50-0.80	0.40-0.60	0.80- 1.10	0.40-0.50	-	0.04-0.09	-		

Note:-

- 1. Chemical composition of steel category III should correspond the norms specified in table 1 for the corresponding grade of steel.
- 2. In the denotation of grade, the first two digits specify the average contents of carbon in hundreds fraction of percent, letters, after digit denote: P Boron, IO aluminium, C silicon, IO Titanium, IO Vanadium, IO Molybdenum, IO Boron, IO Boron,

The denotations of grades of steel corresponding to already existing GOST 4343 - 61 and technical specification are given in the brackets.

- 3. The steel of grades $30\Gamma 2$, $35\Gamma 2$, $40\Gamma 2$, $45\Gamma 2$, $50\Gamma 2$ as per the requirements of customer may be supplied with contents of manganese 1.2-1.6%
- 4. For steel of grade 20XTP, 20XTHP, 20XTHP, 27XTP and 18X2H4MA, Technical addition of titanium as per calculation (without calculation of loss) upto 0.06 % is permitted.
- 5. In steel, containing letter P in the denotation of grade, boron is added as per the calculation (without calculating the loss) in quantity not more than 0.005% In this case, its residual contents in steel should not be less than 0.0010%
- 6. In steel, alloy with molybdenum, grade 38XM, 30XH2MA, 30X2H2MA, 40X2H2MA, 38XH3MA, 18X2H4MA, 25X2H4MA, 30XH2MΦA partial or complete substitution of molybdenum by tungsten is permitted.

During partial substitution of molybdenum by tungsten, one part by weight of molybdenum is substituted by three parts by weight of tungsten; In this case, the total contents of molybdenum and tungsten should correspond to the norms specified in table 1.

According to the requirement of customer, the steels with grade 38XB, 30XH2BA, 30X2H2BA, 40X2H2BA, 38XH3BA, 18X2H4BA, 25X2H4BA, and 30XH2BΦA is manufactured.

Mass fraction of tungsten in these steels should be as follows:

30XB 0.50 - 0.80%	38XH3BA 0.50 - 0.80%
30XH2BA 0.50 - 0.80%	18X2H4BA 0.80 - 1.2 %
38X2H2BA 0.50 - 0.80%	25X2H4BA 0.80 - 1.2%
40X2H2BA 0.60 - 0.90%	30XH2ВФА 0.50 - 0.80%

In specified grade of steel, partial replacement of tungsten by residual molybdenum is permitted at the rate of: one part-by weight of molybdenum is substituted by three parts by weight of tungsten. In this case, mass fraction of tungsten should not be less than:

38XB	0.30%	38XH3BA	0.30%
30XH2B2	2A 0.30%	18X2H4BA	0.50%
38X2H2H	BA 0.30%	25X2H4BA	0.50%
40X2H2H	BA 0.40%	30XH2В Ф А	0.30%

- 7. Presence of tungsten upto 0.20%, molybdenum upto 0.15%, titanium upto 0.03% (excluding the steels of grade, mentioned in note No 4) and vanadium upto 0.05 % in steels not alloyed by these elements is not the reason for rejection.
 - 8. Steel grade 38XH3MΦA as per order of customer may be manufactured with mass fraction of molybdenum 0.20-0.30%.
- 9. Mass fraction of nitrogen in oxygen in converter steel should not exceed for thin sheet of rolling and strip 0.006 %; for other type of rolling 0.008%.
- 10. In accordance with the order, in steel grade 15X, 20X, 30X, 35X, 40X, 45X, 40XH, 15XΦ, 30XMA mass fraction of silicon 0.10 0.37% and in steel grade 20X and 30X mass fraction of manganese 0.40-0.80%.
- 11. As per the requirements of customer, in steel non alloyed by chromium and nickel, mass fraction of manganese may be decreased to value of manganese equivalent, which is equal to:

 $\beta_{\rm M} = 0.3 \, ({\rm Cu}, \%) + 0.5 \, ({\rm Ni}, \%) + 0.7 \, ({\rm Cu}, \%),$

Where C4, Ni, C4 – residual mass fraction of chromium, nickel and copper should not exceed the norms of table 2. In this case, mass fraction of manganese in steel should not be less than 0.35 %.

(Amended edition, Amendment No. 1, 2, 4, 5)

Table 2

C + C + - 1	Mass fraction of elements in % not more than.									
Category of steel	Phosphorous	Sulphur	Copper	Nickel	Chromium					
Quality	~ 0.035°	0.035	0.30	0.30	0.30					
High quality	v 0.025	√0.025	0.3)	0.30	0.30					
Very high quality	0.025	0.015	0.25	0.30	0.30					

Note: -

1. For high quality steels, melted in the main martin furnaces and in the furnaces with acid lining content of phosphorus up to 0.030% is permitted.

In accordance with order in steel, manufactured with scrap process and scrap - ore process, residual mass fraction of nickel and chromium should not more than 0.40 % each.

2. Quality steel of all grades can be manufactured with mass fraction of sulphur and phosphorus in accordance with requirements of tables 2 for high quality steel. In this case, letter A is added to nomenclature of grade of steel.

(Amended edition, Amendment No. 2.5)

2.4 In finished roll and forgings, while observing the norm of mechanical properties and other requirements of present standard, deviations on chemical composition are allowed. Permissible deviation should correspond to those specified in table 3.

Table 3

Name of element	Upper limit of mass fraction of elements, in %	Permissible deviation, in %	Name of element	Upper limit of mass fraction of elements, in	Permissible deviation, in %
Carbon	As per table 1	± 0.01	Vanadium .	0.06 - 0.12	+ 0.02
				0.10 - 0.18	± 0.02
Aluminium	As per table 1	± 0.10	Manganese	Less than 1.0	± 0.02
				1.0 and above	± 0.05
Silicon	Less than 1.0	± 0.02	Nickel	Less than 2.5	- 0.05
	1.0 and above	± 0.05		2.5 and above	- 0.10
Titanium	As per table 1	± 0.02	Molybdenum	As per table 1	± 0.02
Chromium	Less than 1.0 1.0 and above	± 0.02 ± 0.05	Tungsten	As per table 1	± 0.05

Note:- In quality steels, the deviation on contents of Su hur and phosphorus by not more than + 0.005% of each is allowed as per the approval of customer.

(Amended addition, Amendment No. 2)

2.5. In accordance with the indent, the hot oll and forged roll stock are supplied both in heat treated condition (annealed, highly impered or normalized with high tempering) and without heat treatment; calibrated and with special surface finish,

roll stock is manufactured by cold worked or heat treated condition (annealed, tempered, normalized, hardened and tempered).

2.6 The brinell hardness (HB) of annealed or high tempered roll stock with diameter or thickness above 5 mm should correspond to the norms specified in table 4.

Table 4

Group of steel	Grade of steel	Diameter of indent,	Hardness number HB, maximum
		mm, not less than	
Chromium	15X	4.5	179
	15XA	4.5	179
	20X	4.5	179
	30X	4.4	187
	30XPA	3.9	241
	35X	4.3	197
	38XA	4.2	207
	40X	4.1	217
	45X	4.0	229
	50X	4.0	229
Manganese	15Γ	4.7	163
vianganese	20Γ	4.5	179
	25Γ	4.3	197
	30Г	4.3	197
	35Γ	4.2	207
	40Γ, 40 ΓP	4.2	207
	45Γ	4.0	229
	50Γ	4.0	229
	10Γ2	4.3	197
	30Γ2	4.2	207
	35Γ2	4.2	207
	40Γ2	4.1	217
	45Γ2	4.0	229
	50Γ2	4.0	229
	47FT	3.8	255
Channa managanasa	18XF	4.4	187
Chrome-manganese	18XIT	4.1	217
		4.3	197
	20XITP	4.1	217
	27XTP	4.1	217
	25XIT	4.0	229
	30XIT	4.0	229
	40XITP		+
	38XFM	+	

Group of steel	Grade of steel	Diameter of indent,	Hardness number,
£1		mm, not more than	HB, not more than
Chrome – silicon	33XC	3.9	241
	38XC	3.8	255
	40XC	3.8	255
Chrome -	15XM	4.5	179
molybdenum and	20XM	4.5	179
chrome - molyhdenum	30XM	4.0	229
- vanadium	30XMA	4.0	229
	35XM	3.9	241
	38XM	3.9	241
	30Х3МФ	4.0	229
	40ХМФА	3.7	269
Chrome - yanadium	15ХФ	4.4	187
	40 Χ Φ A	3.9	241
Nickel - molybdenum	15H2M (15HM)	4.3	197
Chrome - nickel and	12XH	+	+
chrome – nickel with	20XH	4.3	197
boron	40XH	4.2	207
	45XH	4.2	207
	50XH	4.2	207
	12XH2	4.2	207
	12XH3A	4.1	217
	20XH3A	.3.8	255
	12X2H4A	3.7	269
	20X2H4A	3.7	269
	30XH3A	3.9	241
Chrome-silicon-	20ХГСА	4.2	207
manganese and	25ХГСА	4.1	217
chrome-silicon-	30ХГС	4.0	229
manganese-nickel	30ХГСА	4.0	229
	/30XГСН2A (30XГСНА)	3.8	255
	35ХГСА	3.9	241
Chrome-manganese- nickel and chrome-	15ХГН2ТА (15ХГНТА)	3.7	269
nanganese-nickel	20ХГНР	4.3	197
vith titanium and	14ХГН	+	+
oron ·	19ХГН	+	+
	38ХГН	4.0	
	OUZE II	4.0	229

Continuation of table 4

		Continuat	on of table 4.
Group of steel	Grade of steel	Diameter of indentation, mm, not less than	Hardness number, HB, not more than
Chrome - nickel -	20XH2M (20XHM)	4.0	229
molybdenum	30XH2MA (30XHMA)	3.9	241
	38X2H2MA (38XHMA)	3.7	269
	40XH2MA (40XHMA)	3.7	269
	40X2H2MA (40X1HBA)	3.8	255
	38ХНЗМА	3.7	269
	18X2H4MA (18X2H4BA)	3.7	269
	25X2H4MA (25X2H4BA)	3.7	269
Chrome - nickel -	30ХН2МФА	3.7	269
molybdenum –	36Х2Н2МФА	3.7	269
silicon and chrome – nickel - silicon	(36XH1MΦA) 38XH3MΦA	3.7	269
	45XH2МФА (45XHМФА)	3.7	269
	20ХН4ФА	3.7	269
Chrome – aluminium and chrome aluminium with molybdenum	38X2MIOA (38XMIOA)	4.0	229
Chrome -	20ХГНМ	+	+
manganese – nickel	40ХГНМ	+	+
with molybdenum and titanium	25ХГНМТ	+	+

Note:

1. Upon agreement between manufacturer and customer, it is permitted to manufacturer the roll stock without annealing and high tempering with hardness, corresponding to norms, indicated in table 4.

2. The hardness of calibrated roll in annealed or high tempered condition as well as hot rolled steel, normalized with subsequent high tempering can exceed the hardness value by 15 units of HB specified in table 4.

3. The hardness of roll stock of grade 20XHP, 25XIM, 20H2M (20HM) and 20XIHTP is set as per agreement between manufacturer and customer.

4. Hardness norm for roll stock, manufactured in normalized condition are set as per the agreement with manufacturer and customer.

5. (Delete, Amendment No. 5).

6. Sign "+" denotes that up to 01. 01. 92 hardness are determined for the accumulation of data and results of tests, indicated in the document about the quality.

2.5, 2.6 (Amended edition, Amendment No. 1, 2, 3, 4, 5).

2.7. The hardness of work hardened steel with diameter or thickness above 5 mm, should be not more than BHN 269 (Diameter of indentation, not less than 3.7 mm) or set as per the agreement between manufacturer and customer, except the roll of grades 15X, 15XA, 20X, 30X, 35X, 15Γ, 18XΓΤ, 15XΦ, 38X2MIOA (38XMIOA), the hardness of which should correspond to the norms specified in table5.

Table 5.

Grades of steel	Diameter of indentation, in mm, not less than	Hardness number in HB, not more than
15X, 15XA	4.1	217
20X	4.0	229
30X	3.9	241
35X	3.8	255
15Γ	4.2	207
18XIT	4.0	229
15ХФ	4.1	217
30X2MIOA (38XMIOA)	3.8	255

(Amended edition, Amendment No. 2, 5)

2.8. The hardness of annealed and cold worked calibrated steel and with special surface finish of roll with diameter upto 5 mm inclusive as well as hardening with tempering the roll of all dimensions is set as per the agreement between manufacturer and customer.

(Amended edition, Amendment No. 5)

2.9. The mechanical properties of roll at normal temperature, to be determined for longitudinal heat-treated samples or samples, manufactured from heat-treated blanks should correspond to the norms specified in table 6. Inspection of mechanical properties of calibrated steel and with special surface finish of roll is carried out according to the requirement of customer with the specification in conventional designation of letter M.

Roll stock made up of chromium nickel molybdenum, chromium nickel molybdenum steels are tested additionally for impact strength at normal temperature for samples of type 11 as per GOST 9454 – 78

Note: - Samples for mechanical tests of roll, to be manufactured in the hardened and tempered conditions, are not subjected to heat treatment; the norms of mechanical properties are set as per the agreement between manufacturer and customer.

_	1177						Ž.					1	Table 6
					Heat trea	tment			σB.	a	Jo		Both
			H	ardenin	g	Tempering		σ _T .	E,	l‡i	10	Impact	lank nent ind oi
	eel	eel	Tempera	ture °C	_			f/m	fon f/m	ng.	ucti %	strength	ection al n of blan treatmen of round uare), m
	Group of steel	Grade of steel	1" hardening or normalizing	d hardening	Cooling medium	Temperature °C	Cooling medium	Yield point, σ ₁ . N/mm² (kgf/mm²)	Ultimate strength, σ N/mm² (Kgf/mm²)	Relative elongation δ_{S_s} %	Relative reduction area \(\psi \), %	kCU, (kgf.m)	Cross section al dimension of blank for heat treatment (diameter of round of side of square), mn
			1 st	2nd	0		0		N	1.7			
_		15X 15XA	880	770- 820	Water or oil	180	Air or oil	490 (50)	690 (70)	12	45	69 (7)	15
	m .	20X	880	770- 820	Water or oil	180	Air or oil	635 (65)	780 (80)	11	40	59 (6)	15
	Chromium	30X	860	-	Oil	500	Water or oil	685 (70)	880 (90)	12	45	69 (7)	25
	Chr	30XPA	900 Air	860	Oil	200	Air	1275 (130)	1570 (160)	9	40	49 (5)	1 4
		35X	860	_	Oil	500	500 Water or oil		910 (93)	11	45	69 (7)	25

										Cont	inuation of	table 6					
			I	Ieat treat	ment			in	_	jo		for a					
		I	lardenin	g	Tempering		(kgf/mm²) strength, σ (Kgf/mm²)	Itio	a o	Impact							
teel	ee	Tempera	ture °C	_	7.	_	point, o _r (kgf/mm²)	f m	Relative elongation δ_{S_s} %	reduction of a ψ, %	strength KCU, (kgf.m) cm ²)	section al of blank reatment of round					
Group of steel	Grade of steel	" hardening or normalization	2 nd hardening	Cooling medium	Temperature °C	Cooling medium	Yield point, Gr N/MM² (kgf/mm	Ultimate strength, Gg. N/MM² (Kgf/mm²)		Relative redu		Cross section al dimension of blank fo heat treatment (diameter of round or side of square), mm					
		1 H	72	_	-		Not less than										
	38XA	860	-	Oil	550	Water or oil	785 (80)	930 (95)	12	50	88 (9)	25					
nium	40X	860	-	Oil	500	Water or oil	785	980	10	45	59 (6)	25					
Chromium	45X	840	840	840	840	840		-	Oil	520	Water or oil	835 1030 (85) (105)		1 0	45	49 (5)	25
	50X	830		Oil	520	Water or oil	885 (90)	1080 (110)	9	40	39 (4)	25					
Mang- anese	15Г	880	-	Air	-	-	245 (25)	410 (42)	26	55	-	25					

Continuation	of	tabl	e	6
Communication	OI	uiUi	•	v

				Heat treat	ment	1		g (2		=		10 TO E
		1	Hardenii	ng	Tempering		1. (a)	h, d	elongation %	8	Impact	
3	2	Tempe	perature		1200	22	T, o	To all	50	sti	strength	section al of blank reatment of round
Group of steel	Grade of steel	normalization 2nd hardening	Cooling medium	Temperature °C	Cooling medium	Yield point, GT. N/MM² (kgf/mm²)	Ultimate strength, o N/mm² (Kgf/mm²)	Relative clon	Relative reduction of area \(\psi \text{\sigma} \)	(kgf.m)	Cross section al dimension of blank fo heat treatment (dismeter of round or side of square), mm	
		1, I	74	5	I	0			Not	less tha	n	
	20Г	880	-	Air	-	-	275 (28)	450 (46)	24	50	-	25
	25Г	880	-	Water or air	560	Air	295 (30)	490 (50)	22	50	88 (9)	25
anese	30Г	860	-	Water or air	600	Air	315 (32)	540 (55)	20	45	78 (8)	25
Manganese	35Г	860	-	Water or air	600	Air	335 (34)	560 (57)	18	45	69 (7)	25
	40Г, 40ГР	860	-	Water or air	600	Air	355 (36)	590 (60)	17	45	59 (6)	25
	45 Γ	850	-	Oil or air	600	Air	375 (38)	620 (63)	15	40	49 (5)	25

				Heat treat	ment			â		پ		for or	
		F	lardeni	ng	Tempering		1. (e	h, գյ	tion	000	Impact		
steel	steel	Temper		E		E	point, G _T . (kgf/mm²)	strength, o (Kgf/mm²)	longa %	ducti	strength	section al n of blank reatment r of round quare), m	
Group of steel	Grade of steel	1st hardening or normalization 2sd hardening Cooling mediu		Cooling medium	Temperature °C	Cooling medium	Yield po N/mm² (k	Ultimate strength, GB' N/MM² (Kgf/mm²)	Relative elongation δ_{s_*} %	Relative reduction of white reduction of white reduction of white reduction of cm ₂ (cm ₂ (cm ₂ cm		Cross section al dimension of blank for heat treatment (diameter of round or side of square), mm	
		1 st	2md]			0		Not less than					
	50Γ	850	-	Oil or air	600	Air	390 (40)	650 (66)	13	40	39 (4)	25	
	491YE	820-		Air			1) 375 (38)	620 (63)	15	40	-	25	
nese	47IT	870	-	Air	-	-	2) 390 (40)	640 (65)	12	30	-	25	
M. 18		920	-	Air			245 (25)	420 (43)	22	50	-	25	
	30Г2	880	-	Oil or air	600	Air	345 (35)	590 (60)	15	45	-	25	
	35Г2	870	-	Oil or air	650	Air	365 (37)	620 (63)	13	40	-	25	

										C	ontinuation	n of table 6
				Heat treat	ment							r er
			Hardeni	ng	Te	mpering	. 6	13. g	<u>0</u>	n of		of a set
steel	steel		Temperature °C			я	point, σ_{T} (kgf/mm²)	strength, o (Kgf/mm²)	longat	ductio	Impact	ction al f blank for it (diame or side of
Group of steel	Grade of steel	1st hardening or normalization	2 nd hardening	Cooling medium	Temperature °C	Cooling medium	Yield po N/mm² (k	Ultimate strength, σ _B , N/κκα² (Kgf/mm²)	Relative elongation δ_{S_*} %	Relative reduction of area \(\psi \), %	KCU, (kgf.m)	Cross section al dimension of blank for heat treatment (diameter of round or side of square), mm
		1, u	73						Not	less tha	n	
Se	40Г2	860	_	Oil or air	650	Air	380 (39)	660 (67)	12	40	-	25
Manganese	45 Г 2	850	10-10 -12	Oil or air	650	Air	400 (41)	690 (70)	11	40	_	25
Σ	50Г2	840	_	Oil or air	650	Air	420 (43)	740 (75)	11	35	_	25
Chrome- manganese	18ХГ	880	· I	Oil	200	Air or oil	735 (75)	880 (90)	10	40	-	15

GOST 4543-71 Page 23

area w, %	Impact strength KCU, (kgf.m)	Cross section al dimension of blank for heat treatment (diameter of round of side of square), mn
ha	n	
)	78 (8)	-

		Heat treatment						OB.	_	5 0		A T O E
			Hardeni	ng	Te	empering	1	h, o	tion	u u	Impact	ank sent nd o
E	<u>=</u>	Tempe	rature	_		_	f, o	ngt]	88	%	strength	ection al n of blank treatment of round (
Group of steel	Grade of steel	" hardening or normalization	2 nd hardening	Cooling medium	Temperature °C	Cooling medium	Yield point, GT	Ultimate strength, N/MM2 (Kgf/mm2	Relative elongation δ_{S_s} %	Relative reduction of area \(\psi \), %	(kgf.m)	Cross section al dimension of blank for heat treatment (diameter of round of side of square), mn
		1.8	2,	0		0			Not	less tha	n	
ese	18XIT	880 - 950 Air	870	Oil	200	Air or water	885 (90)	980 (100)	9	50	78 (8)	-
Manganese	20ХГР	880	-	Oil	200	Air or oil	785 (80)	980 (100)	9	50	78 (8)	15
1	27ХГР	870	-	Oil	200	Air	1175 (120)	1370 (140)	8	45	59 (6)	-
Chrome	25XIT	880- 950	850	Oil	200	Water, oil or air	1) 980 (100)	1270 (130)	10	50	69 (7)	-
-	ZSALI	Air	030	OII	200	UI AII	2) 1080 (110)	1470 (150)	9	45	59 (6)	-

Continuation	of	tahi	10	6
Сопшианон	OI	WU.	IC	u

				Heat trea	tment			Q R.	-	J 0		M T P E
		1	Hardeni	ng	Te	mpering	σ _T .		ţ		Impact	E E E E E
3	2	Tempe	rature			_	it, o	100	elongation %	£ %	strength	ection al n of blan treatmen of round
e Group of steel	Grade of steel	" hardening or normalization	d hardening	Cooling medium	Temperature °C	Cooling medium	Yield point, $\sigma_{\mathrm{T}'}$ N/mm² (kgf/mm²)	Ultimate strength, o	Relative elor	Relative reduction area w, %	KCU, (kgf.m)	Cross section dimension of h for heat treats (diameter of rou side of square)
		1"1 DC	2"4	٥		0			Not	less tha	n	
anese	30XIT	880 - 950 Air	850	Oil	200	Water, oil or air	1275 (130)	1470 (150)	9	40	5 9 (6)	
Manganese	40ХГТР	840	-	Oil	550	Water, oil or air	785 (80)	980 (100)	11	45	78 (8)	25
Chrome -	25XI'M	860	-	Oil	200	Air	1080 (110)	1180 (120)	10	45	78 (8)	-
Chr	38ХГМ	870	-	Oil	580- 620	Air	785 (80)	930 (95)	11	-	78 (8)	25

Continuat	ion of	tabl	e 6	j

			1	leat treati	ment		300000	in	=	of		* + p E
		H	ardenin	g	Ten	pering	or.	h, c	tio.		Impact	a de la
E	steel	Tempera	ture °C			g	f/m	f/m	elongation %	reduction a w, %	strength	section al on of blan treatmen of round
Group of steel	Grade of st	hardening normalizing	d hardening	Cooling medium	Temperature °C	Cooling medium	Yield point, N/mm ² (kgf/m	N/mm² (kgf/mm²) Ultimate strength, σ _B . N/mm² (Kgf/mm²)		Relative redu	KCU, (kgf.m)	Cross sections of the control of the
		2"d 2"d Co	0		5	-						
g.	33XC	920	-	Water or oil	630	Water or oil	685 (70)	880 (90)	13	50	78 (8)	25
Chromium-silicon	38XC	900	-	Water or oil	630	Water or oil	735 (75)	930 (95)	12	50	69 (7)	25
romiu	40XC	900	-	Water or oil	540	Water or oil	1) 1080 (110)	1230 (125)	12	40	34 (3.5)	25
5				at 900-9		nitrate at in air	2) 1080 (110)	1230 (125)	12	40	49 (5)	25

									,	Cont	inuation of	table 6
			F	Ieat treat	ment			,a	_	J o		for
		Ha	rdenin	g	Te	mpering	fr m²)	b, o	tio	00	Impact	
eel	lee	Temperat	ure °C	_		_	point, o _T . (kgf/mm²)	f/m	elongation	ucti %	strength	tion bla time rou re)
Group of steel	Grade of steel	1st hardening or normalization	normalization	Cooling medium	Temperature °C	Cooling medium	Yield point, o _T . N/mm² (kgf/mm	Ultimate strength, $\sigma_{\rm B'}$ N/mm² (Kgf/mm²)	Relative elor	Relative reduction of area \(\psi \), \(\psi \)	KCU, (kgf.m) cm ²)	Cross section al dimension of blank for heat treatment (diameter of round or side of square), mm
		*_ g	7,	0	I	0		No	ot less tha	in		
me-	15XM	860	-	Air	650	Air	275 (28)	440 (45)	21	55	118 (12)	30
d chro	20XM	880	-	Water or oil	500	Air	590 (60)	780 (80)	12	50	88 (9)	15
enum and chrome- m-vanadium	30XM	880	-	Oil	540	Water or oil	735 (75)	930 (95)	11	45	78 (8)	15
yh en ler in	3TA	880	-	Oil	540	Water or oil	735 (75)	930 (95)	12	50	88 (9)	15
Chrome-m moly	35XM	850	-	Oil	560	Water or oil	835 (85)	930 (95)	12	45	78 (8)	25
Chro	38XM	850	-	Oil	580	Air	885 (90)	980 (100)	11	45	69 (7)	25

											Continua	tion of table 6
				Heat treat	ment			σB'	_	Jo		for a
			Hardeni	ng	Tempering		m ²)	b, 6	tion	u o	Impact	
e	eel	Tempe	rature				it, o	ngt (/m	nga	%	strength	ion blan me rou 'e),
um Group of steel	Grade of steel	1st hardening or normalization 2nd hardening	Cooling medium	Temperature °C	Cooling medium	Yield point, GT. N/MM² (kgf/mm²)	Ultimate strength, o N/mm² (Kgf/mm²)	Relative elongation δ_{s_*} %	Relative reduction of area \(\psi \%	(kgf.m)	Cross section al dimension of blank fo heat treatment (diameter of round or side of square), mm	
		1 d	7						Not	less tha	n	
lybdenum ome- vanadium	30Х3МФ	870	-	Oil	620	Water or oil	835 (85)	980 (400)	12	55	98 (10)	25
Chrome-molybdenum and chrome- molybdenum-vanadium	40ХМФА	860	ě	Oil	580	Oil	930 (95)	1030 (105)	13	50	88 (9)	25
me -	15ХФ	880	760- 810	Water or oil	180	Air or oil	540 (55)	740 (75)	13	50	78 (8)	15
Chrome -	40ХФА	880	-	Oil	650	Water or oil	735 (75)	880 (90)	10	50	88 (9)	25

											Continua	ation of table 6
			H	eat treatn	nent			â		4		for
		Н	ardenin	g	Tei	mpering	T.	h, G	tion	0 00	Ymmaat	al lik for nt nd or
steel	steel	Tempera	ture °C	E	၁့	E	point, σ_{Γ} (kgf/mm²)	strength, o	longa %	luction, %	Impact strength	tion blan tmer roun re),
l- Group of steel	Grade of steel	1st hardening or normalization 2nd hardening		Cooling medium	Temperature °	Cooling medium	Yield po N/mm² (k	Ultimate strength, o _{B'}	Relative elongation $\delta_{5,}$ %	Relative reduction of area \(\psi \), %	(kgf.m)	Cross section al dimension of blank fo heat treatment (diameter of round or side of square), mm
		l,	2ª			0			Not	less tha	n	
kel- lenum	15H2M (15HM)	860	770- 820	Oil	180	Air	635 (65)	830 (85)	11	50	78 (8)	15
Nickel- molybdenum	20H2M (20HM)	860		Oil	180	Air	685 (70)	880 (90)	10	50	78 (8)	15
ickel ne- ith	12XH	910	s -	Water or oil	150- 180	Air	440 (45)	640 (65)	10	-	88 (9)	
Chrome-nickel and chrome- nickel with boron	20XH	860	760- 810	Water or oil	180	Water, oil or air	590 (60)	780 (80)	14	50	78 (8)	15
Chr.	40XH	820	s =	Water or oil	500	Water or oil	785 (80)	980 (100)	11	45	69 (7)	25

										C	ontinuation	n of table 6
				Heat treat	ment							r ter
- 1		1	Hardeni	ng	Te	mpering		1. GB	lon	0 11	_	k for mete
steel	steel	Tempe °(E	၁့	E	point, o _T . (kgf/mm²)	strength, o (Kgf/mm²)	longat %	eductio	Impact	of blank for ent (diameter l or side of e), mm
Group of	Grade of steel	1" hardening or normalization	2 nd hardening	Cooling medium	Temperature °	Cooling medium	Yield po N/mm² (k	Ultimate str N/mm² (K	Relative elongation Ss. %	Relative reduction of area \(\psi \), %	(kgf.m)	Cross sect dimension of heat treatment of round or
		* I	73						Not	less tha	n	
nickel	45XH	820	-	Water or oil	530	Water or oil	835 (85)	1030 (105)	10	45	69 (7)	25
hrome	50XH	820	_	Water or oil	530	Water or oil	885 (90)	1080 (110)	9	40	49 (5)	25
Chrome-nickel and chrome-nickel with boron	20XHP	930- 950 air	_	Oil	200	Air or oil	980 (100)	1180 (120)	10	50	88 (9)	15
Chrome	12XH2	860	-	Water or oil	180	Air or oil	590 (60)	780 (80)	12	50	88 (9)	15

Continuat	ion	of	tah	le.	6
Comminua	JUII	O.	uau	IC.	v

			He	eat treatm	nent			GB,	-	of		A + p B
		H	ardening	3	Te	mpering	σ _T ,		tio		Impact	lank nent ind o
eel	eel	Tempera	ture °C		7) 6	point, σ_{T} (kgf/mm²)	fm	nga.	ucti	strength	section al on of blank t treatment r of round (
Group of steel	Grade of steel	hardening normalizing	d hardening	Cooling medium	Temperature °C	Cooling medium	Yield point, N/mm² (kgf/n	Ultimate strength, o N/mm² (Kgf/mm²)	Relative elongation δ_{S_s} %	Relative reduction area $\psi, \%$	(kgf.m)	Cross section al dimension of blank for heat treatment (diameter of round side of square), mn
		1*t	2ªd	0	I	0						
оше	12XH3A	860	760- 810	Water or oil	180	Air or oil	685 (70)	930 (95)	11	55	88 (9)	15
Chrone-nickel and chrome-	20XH3A	820	-	Oil	500	Water or oil	735 (75)	930 (95)	12	55	108 (11)	15
	12X2H4A	860	760- 800	Oil	180	Air or oil	930 (95)	1130 (115)	10	50	88 (9)	15
Chron	. 0Y2Y1A	860	/89	Oil	180	Air or oil	1000 (110)	1270 (130)	9	45	78 (8)	15

						7				C	ontinuation	of table 6
	T		Heat	treatme	nt			JB,	g g	Jo	Impact	n al ank for ent und or
		H	ardening		Tem	pering	Tr.	E th	atio	tion		
<u>=</u>	- E	Temperat	ture °C	_		-	point, o _T . (kgf/mm²)	strength, o (Kgf/mm²)	long %	lucti	strength	f bl atm atm f ro
Group of steel	Grade of steel	thardening or normalization	2 nd hardening	Cooling medium	Temperature °C	Cooling medium	Yield poi N/mm² (kg	Ultimate strength, GB' N/MM² (Kgf/mm²)	Relative elongation δ_{S_s} %	Relative reduction of area \(\psi \),	KCU, (kgf.m)	Cross section al dimension of blank for heat treatment (diameter of round or side of square), mm
		1st]		Ö	F	0		No	ot less tha	an		
	30XH3A	820	-	Oil	530	Water or oil	785 (80)	980 (100)	10	50	78 (8)	25
and e-	20ХГСА	880	-	Oil	500	Water or oil	635 (65)	780 (80)	12	45	69 (7)	15
nganese nanganes	25XICA	880	-	Oil	480	Water or oil	835 (85)	1080 (110)	10	40	59 (6)	15
Chrome-silicon-manganese and chrome-silicon-manganese-	30ХГС	880	-	Oil	540	Water or oil	835 (85)	1080 (110)	10	45	44 (4.5)	25
	30ХГСА	880	-	Oil	540	Water or oil	835 (85)	1080 (110)	10	45	49 (5)	25

_									1		Continua	ation of table 6
			Hea	t treatme	nt			ZB.	_	of		To To E
Group of steel			Hardenin	g	Tem	pering	T. m ²)	h, c	tio I	00	Impact	al nk nt nt nd nt
	=	Temper	ature °C				ľm ľ	f m	nga	Relative reduction of area \(\psi \), %	strength	ion bla me rou
	Grade of steel	l" hardening or normalization	2"d hardening	Cooling medium	Temperature °C	Cooling medium	Yield point, σ _T . N/mm² (kgf/mm²)	Ultimate strength, GB'	Relative elongation δ_{5} , %		KCU, (kgf.m)	Cross section al dimension of blank fo heat treatment (diameter of round o side of square), mm
		#_ a	7	J					Not	less tha	n	
nese and ese-nickel	35ХГСА	the m	npering a ixture of , having t	potassiur	n and s ure 280	odium						
Chrome-silicon-manganese and chrome-silicon-manganese-nickel		950 oil 700 air	890	Oil	230	Air or oil	1275 (130)	1620 (165)	9	40	39 (4)	-
Chrome-s chrome-sil	30XГСН2A (30XГСНА)	900	-	Oil	260	Air or oil	1375 (140)	1620 (165)	9	45	59 (6)	

Hea	t treatn	nent			à		4			
dening Tempering		n d	h, q	tion	on o	Impact	n d t d			
hardening	8	ာ့	8	point, cr. (kgf/mm²)	strength, GB (Kgf/mm²)	elongation %	reduction of n ψ, %	Impact strength	Cross section al dimension of blank heat treatment (diameter of round side of square), m	
	Cooling medium	Temperature °	Cooling hedium	Yield po N/mm² (k	Ultimate str N/mm² (K	Relative el	Relative re	(kgf.m)		
2nd		L				Not	less tha	n		
340	Oil	180	Air or oil	735 (75)	930 (95)	11	55	98 (10)	15	
80- 330	Oil	200	Air or oil	1080 (110)	1270 (130)	10	50	88 (9)	15	

9

12

50

45

980

(100)

835

(85)

930

(95)

685

(70)

Oil

Air

Air

Water

or oil

1180

(120)

1080

(110)

1180-1520

(120-155)

780

(80)

Hardening

2nd hardening

840

780-

830

-

Oil

Oil

Oil

Oil

200

150-

180

150-

180

570

Temperature

normalization

1st hardening

960

air 930-

950

air

850

870

870

850

Group of steel

Chrome-manganese-nickel and chrome-manganese-nickel with titanium, molybdenum and boron

Grade of steel

15ХГН2ТА

(15XГНТА)

20ХГНР

20ХГНТР

14ХГН

19XI'H

38XI'H

GOST 4543-71	Page 33
--------------	---------

78

(8)

78

(8)

69

(7)

98

(10)

15

25

										C	ontinuatio	n of table 6
			Hea	t treatme	ent			ja,	_	of		for
		H	ardenin	g	Tempering		r _T ,	h, o	tior	l g	Impact	
ee	teel	Temperat	ture °C	_	7.)	_	f, o	ngt f/m	nga	% acti	strength	ion blan me rou
Group of steel	Grade of steel	1 st hardening or normalization	2"d hardening	Cooling medium	Temperature °C	Cooling medium	Yield point, σ_{T} N/mm² (kgf/mm²)		Relative elongation δ_{S_s} %	Relative reduction area \(\psi \%	KCU, (kgf.m)	Cross section al dimension of blank for heat treatment (diameter of round or side of square), mm
		124	71	J	-				Not	less tha	a	
ickel and ckel with m and	20ХГНМ	860	ı	Oil	150- 180	Air	930 (95)	1180-1570 (120-160)	7	-	59 (6)	-
Chrome manganese nickel and chrome manganese nickel with titanium, molybdenum and boron	40ХГНМ	840	_	Oil	560- 620	Air	835 (85)	980 (100)	12	-	88 (9)	25
Chrome-m chrome-m titanium	25ХГНМТ	860	_	Oil	190	Air	1080 (110)	1180 (120)	10	40	49 (5)	25
nicke' enum	20XH2M (20XHM)	860	780	Oil	200	Water or oil	685 (70)	880 (90)	11	50	78 (8)	15
Chrome- nicke molybdenum	30XH2MA (30XHMA)	860	-	Oil	530	air	785 (80)	980 (100)	10	45	78 (8)	15
	38X2H2MA (38XHMA)	870	-	Oil	580	Air or oil	930 (95)	1080 (110)	12	50	78 (8)	25

~			0			
Con	tınuz	ation	of	tab	le	6

			Heat	treatm	ent			σB'		of		J 0		
		Ha	rdening		Tempering		1		tion	g g	Impact	al ank ent nd on		
eel	2	Tempera	ture °C		၁့	_	f, o	ngt]	Ra	Relative reduction of area \(\psi \%	strength	ection al on of blank treatment of round or uare), mm		
Group of steel	Grade of steel	1st hardening or normalization	2"d hardening	Cooling medium	Temperature	Cooling medium	Yield point, GT: N/MM² (kgf/mm²)	Ultimate strength, N/mm² (Kgf/mm	Relative elongation δ_{s_s} %		KCU, (kgf.m)	Cross section al dimension of blank for heat treatment (diameter of round o		
		*1 g	17	0	-	0	Not less than							
	40XH2MA (40XHMA)	X X II -	950	950		Oil	620	Water	1) 930 (95)	1080	12	50	78 (8)	25
lenum			_	Oil	020	or oil	2) 835 (85)	(110)	12	55	98 (10)	25		
molybo	40X2H2MA (40X1HBA)	870	-	Oil	600	Water or oil	930 (95)	980 (100)	10	45	78 (8)	25		
Chrome – nickel-molybdenum	38ХНЗМА	850	-	Oil	590	Air	980 (100)	1080 (110)	12	50	78 (8)	25		
	18X2H4MA (18X2H4BA)	950	860	Air	200	Air or oil	1) 835 (85)	1130 (115)	12	50	98 (10)	15		
ט		950 Air	860	Oil	550	Air or oil	2) 785 (80)	1030 (105)	12	50	118 (12)	15		

Continuation	of	tab	le	6
COLLEGERATORY	4.4	****		~

			Heat	treatm	ent			in a	-	Jo		4 T E
		Har	dening		Ten	pering	F 6	B,	Iţio	6	Impact	al lan lan nd
lee l	=	Temperat	ure °C	=	၁့		C'm	fun	aga .	%	strength	ion of b attr rou re)
Group of steel	Grade of steel	1st hardening or normalizing	2 nd hardening	Cooling medium	Temperature °	Cooling medium	Yield point, σ _τ . N/мм² (kgť/mm²)	Ultimate strength, o _B . N/mm² (Kgf/mm²)	Relative elongation δ_{S_s} %	Relative reduction of area \(\psi \), \(\psi \)	(kgf.m)	Cross section al dimension of blank for heat treatment (diameter of round or side of square), mm
		1 st)	L			No	t less the	an			
Chrome – nickel- molybdenun	25X2H4MA (25X2H4BA)	850	-	Oil	560	oil	930 (95)	1080 (110)	11	45	88 (9)	25
pus :	30ХН2МФА	860	-	Oil	680	Air	785 (80)	880 (90)	10	40	88 (9)	25
Chrome-nickel-molybdenum-silicon and chrome-silicon-nickel	36Х2Н2МФА (36ХН1МФА)	850	-	Oil	600	Air	1080 (110)	1180 (120)	12	50	78 (8)	25
nickel-molybdenum-si chrome-silicon-nickel	38ХН3МФА	850	-	Oil	600	Air	1080 (110)	1180 (120)	12	50	78 (8)	25
cel-moly ome-sili	45ХН2МФА	860		Oil	460	Oil	1) 1275 (130)	1420 (145)	7	35	39 (4)	*
ne-nick chr	(45ХНМФА)	300		Oil	100		2) 1325 (135)	1470 (150)	7	35	39 (4)	× -
Chron	20ХН4ФА	850	-	Oil	630	Water	685 (70)	880 (90)	12	50	98 (10)	25

1			140			-
Car	-	ation	nf.	tahi	10	4
1.43		1211.10 11 1	631	124113		O

	74		He	at treatme	ent	1		jin	_	*		A . P E	
		Ha	rdenin	g	Tem	pering	n (h, G	gation		Immost		
2	7	Temperati	ure °C	_		_	t, o	C m		% cti	Impact strength	ection al n of blan treatmen of round	
th Group of steel	Grade of steel	1" bardening or normalization	d hardening	Cooling medium	Temperature °C	Cooling medium	Yield point, GT. N/mm² (kgf/mm²)	Ultimate strength, o	Relative elongation S _{S.} %	Relative reduction of area \(\psi \), %	KCU, (kgf.m)	Cross section al dimension of blan for heat treatmen (diameter of round side of square), m	
		1" ha Borr		0	1	- 0			Not less than				
Chrome – aluminium and chrome –aluminium with molybdenum	38Х2МЮА	940	-	Water or oil	640	Water or oil	835 (85)	980 (10)	14	50	88 (9)	30	

Note:

1. During heat treatment of blanks as per modes, specified in table 6, the following deviations on the heating temperature are permitted:

 During hardening
 ± 15° C

 At low tempering
 ± 30° C

 At high tempering
 ± 50° C

2. Hardening of blank in air made of steel grade 18X2H4MA, cut from bar with diameter or thickness 80 mm and more, is carried out in housing.

3. The norms of mechanical properties belong to samples, taken from bars having diameter or thickness upto 80 mm inclusive.

GOST 4543-71 page 38

While testing, the bars having diameter or thickness above 80 to 150 mm, reduction in relative elongation by 2 abs%; relative reduction in area by 5 abs% and Impact strength by 10 % in compliance with the norms specified in table 6 are permitted.

Reduction in relative elongation by 3 abs%, relative reduction in area by 10 abs% and Impact strength by 15 % is permitted for bars having diameter and thickness 151 mm and more.

The norms of mechanical properties of samples and bars made of steel having diameter or thickness more than 100 mm rolled or forged into square having dimension 90 – 100 mm should correspond to those specified in table 6.

For steel with standardized ultimate strength of not less than 1180 N / mm² (120 kgf/mm²), reduction in norms of Impact strength by 9.8 J / cm² (1 kgf. m / cm²) is permitted during simultaneous increase in ultimate strength by not less than 98 N / mm² (10 kgf/mm²).

- 4. Norms of Impact strength are given for the samples of type 1 as per GOST 9454 78.
 - 5. While determining the mechanical properties of steel as per the agreement between manufacturer and customer, change in the mode of heat treatment is permitted as specified in table 6 with corresponding correction of norms of mechanical properties.
 - 6. Before hardening, it is permitted to carry out normalization. For steel, meant for hardening with currents of high frequency, normalization before hardening is to be carried out as per the agreement with customer.
 - 7. It is permitted to carry out tests of rolls made up of steel of all grades after single hardening provided the norms given in table 6 are observed.
 - 8. In those cases, if during tensile test, position of yield is not detected on the metal, do not determine the yield point (σ_T), it is permitted to determine the conventional yield point (σο2).
 - 9. The bars with section less than that specified in table 6 are subjected to heat treatment in the complete section of roll.
 - 10. In column "dimension of section of blanks for heat treatment (round and square) "symbol "__" shows that heat treatment is done on finished samples.
 - 11. Customer should specify the version of mechanical properties steel roll made of grades 25ΧΓΤ, 40ΧC, 40ΧΗ2ΜΑ (40ΧΗΜΑ), 18Χ2Η4ΜΑ (18Χ2Η4ΒΑ); 47ΓΤ and 45ΧΗ2ΜΦΑ (45ΧΗΜΦΑ). During absence of specification of version of mechanical properties, manufacturer selects them.
 - 12. Moneys of togchanical properties of roll made of steel grade 38XFM and 14XFH upto 01.01.92 are not the sign of rejection.
 - 13 To is permitted to carry out second hardening at temperature 860°C with cooling in oil, for rolling made of steel grade 45XH2MΦA (45XHMΦA) with version of mechanical properties 2.

(Amended edition, Amendment No. 4 and 5).

2.10 Bar made of steel of grades 15X, 20X, 30X, 30XPA, 35X, 40X, 45X, 18XΓΤ, 20XΓP, 27XΓP, 30XΓΤ, 25XΓM, 38XC, 30XMA, 40XΦA, 12XH3A, 20XH3A, 12X2H4A and 30XΓCA manufactured according to the requirement of customer with normalized hardenability in the limits of complete marking of strip (dotted line) or with narrow strip (solid line) continuously specifying in conventional code of letter P.

The strips of hardenability and diameter of bars, having the same hardness as the facial samples after the volumetric hardening in water and oil at a corresponding distance from the cooling of face of sample and the place of measurement of hardness along the section of bar are given in drawings 1-18 of annexure 1.

Variation limits of hardness (maximum and minimum) along the length of endwise samples for solid and dotted lines of hardenability are given in annexure 2.

For bars, made up of steels of grade 30XPA, norms of hardenability are set as per the agreement between manufacture and customer.

Note:

- 1. Upon agreement between manufacture and customer, manufacture of bar of steel by checking the hardenability, it is permitted to carry out inspection of mechanical properties, if the manufacturer guarantees the conformity of those properties to norms, specified in table 6.
- Hardenability test of bars made up of steel of all grades except boron contents need not be carried out in case of conformity of norms of hardenability to the requirement of present standard.

Variation limits of hardness (maximum and minimum) along the length of endwise sample may be changed as per the agreement between manufacture and customer.

2.11. On the surface of bars, meant for hot working and cold drawing including the turned and roughened surface 1, the local defects should be removed by trimming or by dressing to a width of not less than five times of the depth.

The depth of dressing the defects should not exceed the norms, specified in table 7. Not more than two dressings to maximum depth are permitted in one section of bar with size (diameter or thickness) more than 140 mm.

Separate small notches, dents, ripples in the limits of half of sum of limit deviations are permitted on the surface of bars without dressing. Hairline cracks are not permitted.

Separate small notches, dents and ripples in the limits of half of the sum of limit deviations and also minor hairline cracks with depth not exceeding 1/4th of the limit deviation on dimension not more than 0.2 mm are permitted on the surface of bar without dressing. Hairline cracks are not permitted on the surface of bar made of very high-quality steel. Other requirements for the surface - for the bar of surface quality of group 1.

Table 7

Dimension of bar	Depth of dressing of def	ects, not more than					
	Bar made of quality steel and high quality steel	Bar made of very high quality steel					
Above 200	6 % of dimension	3 % of dimension					
From 140 to 200	5 % of dimension	3 % of dimension					
From 80 to 140	Sum of limit deviation	Half of the sum of limit deviation					
Less than 80	Half of the sum of limit deviation						

On the surface of bar of surface quality of group 3, local defects are not permitted, if their depth to be determined by inspection filing and by blanking, calculated from nominal size, exceeds the norms, indicated in table 8.

Table 8

Dimension of bar in	Depth of dressing of de	fects, not more than		
mm	Bar made of quality steel and high quality steel	Bar made of very high quality steel		
100 and more	Sum of limit deviation	Negative tolerance		
Less than 100	Negative	e tolerance		

(Amended edition, Amendment No. 5)

2.12. (Deleted, Amendment No. 5)

2.13. Quality of surface and requirements on trimming of end face calibrated bar should correspond to GOST 1051 - 73, bar with special surface finish - GOST 14955 - 77.

(Amended edition, Amendment No. 2)

2.14. The decarburizing of bar with turned, roughened and ground surface and bars with special surface finish meant for hardening with high frequency current is not permitted.

As per the requirement of customer, steel to be manufactured without the turning, roughly machining and grinding, with a mass fraction of carbon more than 0.3 % (as per the lower limit), total depth of decarburized layer (ferrite + transition zone) is checked which should not exceed 1.5 % of diameter or thickness.

(Amended edition, Amendment No. 2.5)

2.15. Bar should be evenly trimmed. The rumpled ends and burrs are permitted. The slant of cut of bar with dimension upto 30 mm, is not regulated, more than 30 mm - it should not exceed 0.1 diameters or thickness. It is permitted to manufacture the bar having dimension upto 40 mm of off-measure length with the untrimmed ends is permitted.

Rolled bar stock is manufactured on the demand of customer: with standardized value of crumpling of ends not more than 70 mm; with dimension upto 140 mm without burrs and rumpled ends.

(Amended edition, Amendment No 5).

2.16. Bar of surface quality of group 1 is tested for upsetting in hot condition.
Note. Manufacturing concern can not conduct testing for upsetting of bar with

dimension more than 80 mm.

2.17. Macrostructure of bar during inspection on etched template or on fracture, should not have shrinkage cavity, porosity, blisters, cracks, peeling, slag inclusions and flakes and should corresponds to the requirements, specified in table 9.

								I able
Category		Ma	crostructu	re of bar in	points, not	more than	1	
of steel	Shrinkage porosity	Non-homogeneous point	Liquation square	General spotted liquation	Liquation at the edge	Shnrinkage liquation	Sub crust bubbles	Inter crystalline cracks
Quality	3	3	3	1	1	1		
High quality	2	2	2	Not per	rmitted	1	Not per	mitted
Very high quality	1	1	1		Not	permitted	I	

Note:

1. In bar, made up of high quality steel of grade 30XTCA, 35XTCA, 25XTCA and 20XTCA, the liquation square not more than 3 points and in the bar made up of quality and high quality steel of grades 38X2MIOA – liquation at the edge or general spotted liquation not more than 2 points is permitted.

2. In bar, made up of very high quality steel, sub layer crystallization and light profile

of not more than 3 points is permitted.

3. In steels, meant for cold machining, sub crust blowholes to depth of not more than the half of the tolerance on diameter or thickness are permitted.

4. In steel of grades 12X2H4MA and 25X2H4MA with dimension more than 160 mm, permissible degree of development of inter-crystalline cracks is set as per the agreement between both manufacture and customer.

45. It is permitted to carry out the testing of macrostructure of bars by the method of ultrasonic inspection (V3K).

2.16 - 2.17. (Amended edition, Amendment No. 2.5).

2.18. As per the requirement of customer, steel is supplied:

- a) With contracted limits of contents of carbon and alloy elements in comparison with those specified in table 1, as per indent of automobile industry without considering the permissible deviation on carbon, specified in table 3;
- 6) With the mass fraction of sulphur and phosphorous not more than 0.025 %, each in quality steel. In this case, letter "A" is added at the end of steel grade;
- B) With the mass fraction of sulphur not more than 0.015 % in high qualitative steel and not more than 0.012 % in very high quality steel;
- Γ) With the mass fraction of phosphorous not more than 0.020 % in high quality steel and not more than 0.012 % in very high quality steel;
- д) By limiting the contents of sulphur as per lower limit not less than 0.020 % in qualitative steel;
- e) With mass fraction of copper not more than 0.20 % in steel, meant for hot working under pressure;
 - ж) In etched condition;
 - 3) With standardized purity as per non-metallic inclusions;
- и) By determining the mechanical properties in bar with dimension not more than 80 mm on cross sectional samples;
- k) With standard hardness, not specified in table 4, in supply condition and also with less hardness in comparison with hardness specified in table 4;
- \sqrt{n}) By determining the Impact strength at normal temperature on the samples of type 11 as per GOST 9454 78 for steel of group not specified in point 2.9;
- m) By determining the Impact strength at temperature minus 60° C and by determining the fraction of viscous component in the fraction of sample of type 1 as per GOST 9454 78 (for steels, meant for machines and mechanism of northern version);
- H) With standard finish of steel as to hairline cracks to be detected on the surface of parts by magnetic method or by etching. Contamination of steel should not exceed the norms, specified in table 10;
- o) With standard austenitic grain size, which should not be larger than the number 5, austenitic grain size for steel of grade 38X2MIOA (38XMIOA) should not be larger than the number 4. The presence of grains of 3 numbers, which occupy the area on ground joint less than 10 % is permitted;
 - II) With the inspection of machining;
 - p) With standard hardenability for steel of grades, not included in point 2.10;

- c) By checking the macrostructure by etching and as per fracture simultaneously;
 - t) By checking the waviness in fracture;
- y) By checking the banding and ferrite-pearlite structure and widmannstatten structure;
 - Φ) In heat treated condition (hardening + tempering);
- II) With the standard of mass fraction of nitrogen in steel, smelted in the electric furnaces;
- III) by determination of mass fraction of residual of tungsten, vanadium, titanium, molybdenum for each melting.

Note: The norms as per sub point a, μ , 3, κ , π , m, p, c, y, ϕ , μ by inspection methods of purity of steel for hairline cracks (sub point μ), inspection of machinability (sub point μ), waviness in the ruptures (sub point μ), banding and windmanststen structure (sub point μ) if they are not specified in special standard on the metallic bar are set by agreement between manufacture and customer or by corresponding technical document, approved in set order.

Table 10

		of permis cracks in		Maximum hair line cr steel, in m	acks in	Total extent of hairline cracks in steel, in mm			
Total area of part surface to be checked, in cm ²	Quality steel	High quality steel	Very high quality steel	Quality and high quality steel	Very high quality steel	Quality steel	High quality steel	Very high quality steel	
Upto 50	5	2	1	6	3	10	5	3	
above 50-100	6	3	2	7	3	10	8	5	
above 100-200	8	4	2	8	4	20	10	6	
above 200-300	10	6	3	9	4	30	15	8	
above 300-400	11	8	4	10	5	40	20	10	
above 400-600	12	9	5	12	6	60	30	18	
above 600-800	13	10	5	14	6	80	40	24	
above 800-1000	15	11	6	15	7	100	50	30	

Note:

- 1. For every subsequent 200 cm² of inspection surface of finish parts, the area of which exceeds 1000 cm², maximum one hairline crack is permitted with length not more than that specified for the area 1000 cm² with corresponding increase in total length of hairline crack.
- 2. On the parts, with surface area exceeding 200 cm², maximum 5 hairline cracks are permitted, on the sections of surface with area 10 cm² for quality and high quality steel, and maximum 3 hairline cracks is permitted for very high quality steel.

(Amended edition, Amendment No. 1, 2, 5).

3. ACCEPTANCE RULES

3.1. (Deleted, Amendment No. 2).

3.2. Bars, strips and bundles are supplied in batches, consisting of steel of same melt, same dimension and same mode of heat treatment. Each batch should accompany the document about the quality according to GOST 7566—81.

(Amended edition, Amendment No. 2)

- 3.3. For checking the quality of steel, samples are taken from the batch of bars, strips and bundles:
- a) for chemical analysis of sample according to GOST 7565 81. Inspection of residual content of copper, nickel, chromium, nitrogen, tungsten, vanadium, molybdenum and titanium is carried out periodically, not less than once in a quarter;

6) for checking the surface quality and dimension - all bars, strips and bundles;

B) for the inspection of macrostructure as per rupture or by etching, for the tensile testing and impact bending two bars, bundles or two strips;

r) for the bulging test and determining the depth of decarburized layer — three

bars, strips or bundles;

- д) for checking the hardness 2 % bars, bundles or strips having dimension more than 30 mm, also, on one bar from 1T of bars, bundles or strips with dimension 30 mm and less, but not less than five bars, bundles or strips;
- e) for the determination the hardenability and grain size on one bar, bundle or one strip from the melting ladle for steel of all grades, except those containing boron, and on two bars, bundle or two strips from the melting ladle of steel of grades, which contain boron.
- ж) for determining the nonmetallic inclusions samples according to GOST 1778 70.

(Amended edition, Amendment No. 2, 5).

3.4. On obtaining of unsatisfactory results of tests at least on one of the parameters, repeated tests are carried out according to GOST 7566—81. The results of repeated tests are final.

(Introduced additionally, Amendment No. 2)

4. TEST METHODS

4.1. Chemical analysis of steel are carried out as per GOST 20560 —81, GOST 12344-88, GOST 12345-88, GOST 12346-78, GOST 12347-77, GOST 12348-78, GOST 12349-83, GOST 12350-78, GOST 12351-81, GOST 12352-81, GOST 12354-

81, GOST 12355-78, GOST 12356-81, GOST 12357-84, GOST 12359-81, GOST 12360—82, GOST 18895—81 or by other methods, as per accuracy, not being inferior to standard. Chemical analysis is carried out by standard methods in case of differences.

4.2. Geometric dimensions and the form of rolling stocks are determined with the help of measuring instruments according to GOST 26877 — 86, GOST 162-80, GOST 166-80, GOST 427-75, GOST 3749-77, GOST 5378-88, GOST 6507-78, GOST 7502 —89, and also tools or templates, certified according to GOST 8.001 - 80 or GOST 8.326-78.

4.1; 4.2 (Amended edition, Amendment No. 5).

 $\sqrt{4.3}$. The surface quality is checked without using the magnifying devices. If necessary, carry out brightening or etching of surface, and for bar with special surface finish having diameter upto 3 mm inclusive, visual inspection is carried out with 10^{X} magnifying glass additionally. Depth of detected defects on the surface of bar is determined by inspection of dressing or filling.

(Amended edition, Amendment No. 2, 5).

4.4a. From each selected one, bar, strip or bundle are selected for inspection:

for the tensile testing (yield point, ultimate strength, relative elongation, relative reduction of area), upsetting, determinations of depth of decarburized layer, grain size and hardenability - on one sample;

for the testing of impact bending - on each sample of each type;

for inspection of macrostructure — one template.

Sampling from bundles for all types of tests is carried out at a distance not less than 1.5 turns from the end of reeling/unrolling.

(Amended edition, Amendment No. 5).

4.4. Inspection of macrostructure of bar by etching method or as per rupture are carried out according to GOST 10243 - 75, and by ultrasonic – according to the method of plant – supplier.

4.5. Sampling for mechanical tests is carried out according to GOST 7564-73

(version 1).

√4.6. Carry out bulging test in hot condition according to GOST 8817 - 82. Samples are heated upto temperature 1150 - 1250° C and upset to 65 % (upto 1/3 with respect to original height.

(Amended edition, Amendment No. 5).

4.7. Tensile testing (yield point, ultimate strength, relative elongation, relative reduction of area) is carried out according to GOST 1497 – 84 in round samples of

five-fold length with diameter 5 or 10 mm. It is permitted to conduct tests in full-

scale samples by section, not less indicated in table 6.

Tests for Impact strength at normal temperature is carried out in the samples of the type I according to GOST 9454 - 78 at a temperature minus 60° C - on samples of type 1 according to GOST 9454 — 78. It is permitted to carry out Impact strength test on samples of type 3 with thickness of bar less than 10 mm. Test results of bar made of chrome-nickel-molybdenum and chrome-nickel-molybdenum-vanadium steel for Impact strength on samples of type II according to GOST 9454 - 78 should be recorded in document about the quality.

The percentage viscous component in rupture of samples is determined

according to the method that given in appendix 3.

It is permitted to use the nondestructive methods of test according to matched procedure.

(Amended edition, Amendment No. 1, 2, 4, 5).

4.8. Depth of decarbonized layer is determined by the method M as per GOST 1763 – 68. Upon agreement between manufacture and customer, it is permitted to determine the decarbonized layer of calibrated steel by method T as per GOST 1763 – 63.

4.9. Grain size is determined as per GOST 5639 - 82. Grain size for steel of case hardening grades is carried out by case hardening method, temper hardening - by

oxidation method, steel of grade 38X2MIOA - by etching method.

(Amended edition, Amendment No. 5).

4.10. Hardenability is determined by end hardening method as per GOST 5657 - 69.

4.11. Brinell hardness is determined as per COST 9012 - 59. Number of indentation - not less than three.

(Amended edition, Amendment No. 4).

4.12. Nonmetallic inclusions is determination as per GOST 1778 - 70.

4.13. Steel bars, which have passed the tests on macro-structure, hardenability and mechanical properties on the large profile, it is permitted that the test results are made applicable to batch low profile bars.

4.14. In case of detection of flakes at least in one bar, the entire metal of this

batch is rejected.

4.13, 4.14. (Amended edition, Amendment No. 2)

4.15. (Delete, Amendment No. 2).

4.16. During the use of static method for inspection of hardness and mechanical properties by manufacturing plant with respect to hornative technical documents, approved in established order, it is permitted to not carry out the inspection of

hardness and mechanical properties, provided by present standard. In this case, manufacturer guarantees the conformity of released products to the requirements of present standard. In arbitrary cases and during periodic inspections of quality of products, methods of inspection, provided by present standard are used.

(Introduced additionally, Amendment № 4).

5. PACKING, MARKING, TRANSPORTATION AND STORAGE

Marking, packing, transportation and storage of roll - according to GOST
 81 with additions.

5.1.1. Transportation of roll is carried out by all types of transport in accordance

with rules of transportation of loads, existing on this form of transport.

Weight of package should not exceed during mechanized loading in open transportation means - 10 T, in covered transportation -1250 kg.

Means of packing - according to GOST 7566 - 81.

By railroad, transportation is accomplished depending on mass and overall dimensions in covered or opened wagons according to GOST 22235 - 76.

(Amended edition, Amendment No. 5).

5.1.2. During the delivery to one address of two or more packages, whose dimensions make it possible to design the transportation packet with overall dimensions according to GOST 24597 - 81, packages should be designed in transport packets according to GOST 21929 - 76.

5.1.3. Marking, packing, transportation and storage of calibrated bar - according to GOST 1051 - 73, bar with special surface finish - according to GOST 14955 - 77.

(Amended edition, Amendment No. 4, 5).

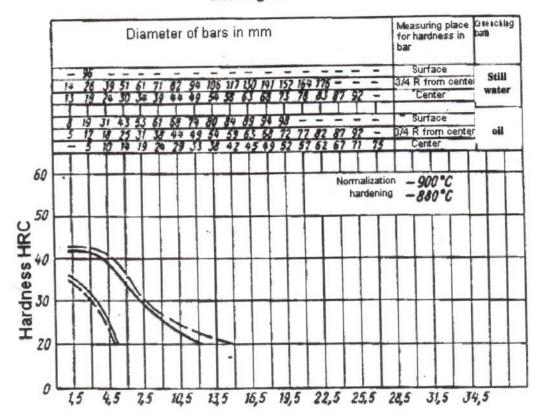
5.2. Minimum weight of roll of one batch (melt) is established as per the

agreement between manufacturer and customer.

5.3. As per the requirement of customer, specified in indent, packets, ends or end faces of hot rolled and forged roll, and upon agreement between manufacture and customer calibrated bars made up of steels of all grades depending upon the group should be marked with paint of following colour, specified in table 11.

Table 11

Group of steel	Colour of paint
Chromium	Green + yellow
Manganese	Brown + blue
Chrome – manganese	Blue + black
Chrome – silicon	Blue + red
Chrome – molybdenum and chrome – molybdenum – vanadium	Green + violet
Chrome -vanadium	Green + black
Nickel - molybdenum	Yellow + violet
Chrome – nickel and chrome – nickel with boron	Yellow + black
Chrome – silicon - manganese	Red + violet
Chrome - nickel - molybdenum	Violet + black
Chrome – aluminium and chrome – aluminium with molybdenum	Aluminum colour

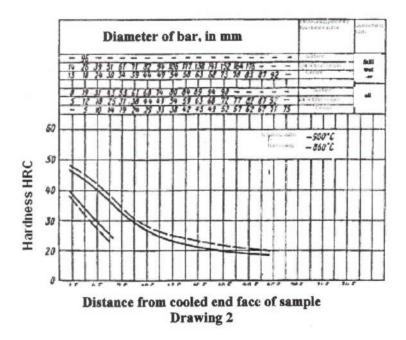

Note: The colour of paint for marking steel rolls of other groups is set as per the agreement between both the sides.

5.2, 5.3. (Amended edition, Amendment No. 2, 5).

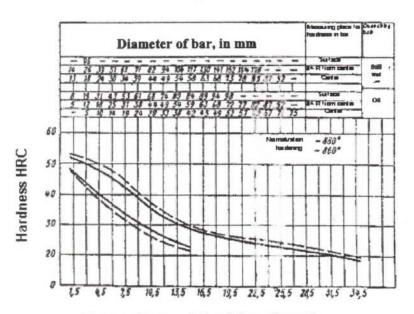
Annexure 1

HARDENABILITY BANDS FOR STRUCTURAL ALLOY STEEL

Steel of grade 15X

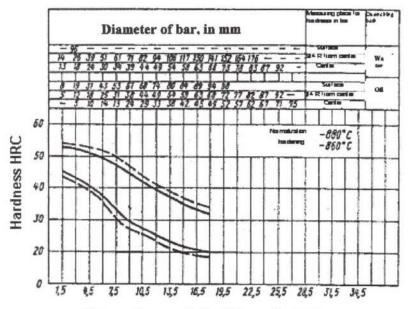


Distance from cooled end face of sample, in mm.

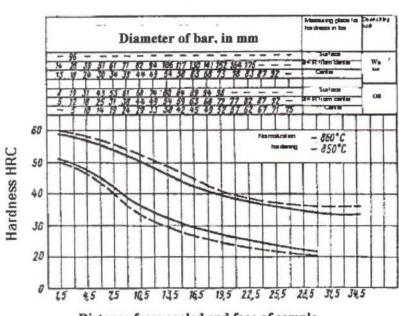

Drawing 1

ŧ

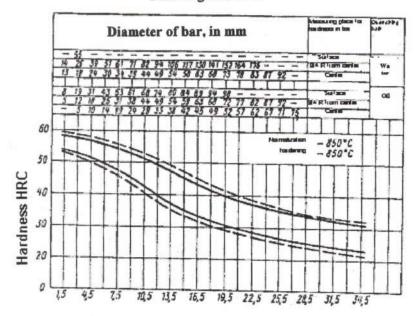
Steel of grade 20 X



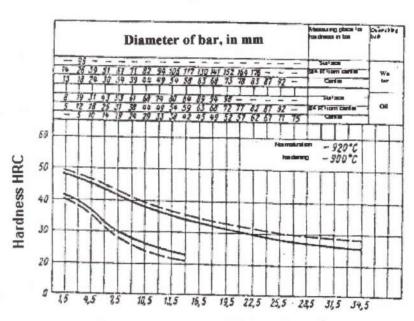
Steel of grade 30X


Distance from cooled end face of sample Drawing 3

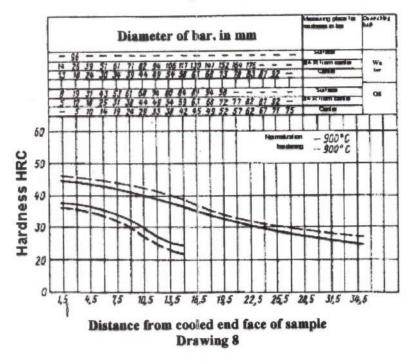
Steel of grade 35 X


Distance from cooled end face of sample Drawing 4

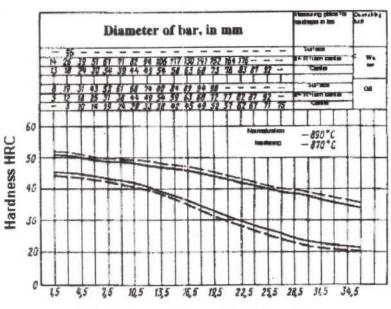
Steel of grade 40 X


Distance from cooled end face of sample Drawing 5

Steel of grade 45 X


Distance from cooled end face of sample Drawing 6

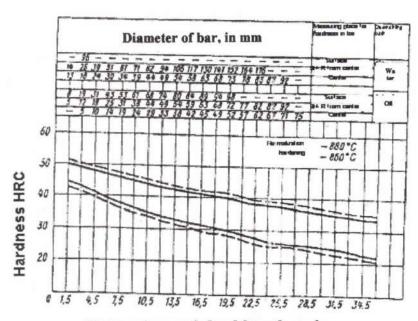
Steel of grade 18 XIT



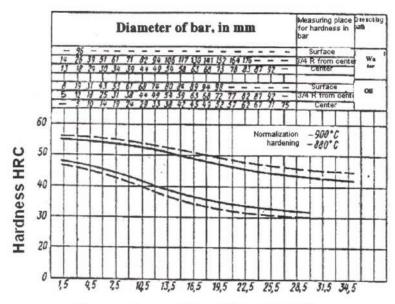
Distance from cooled end face of sample Drawing 7

Steel of grade 20 XTP

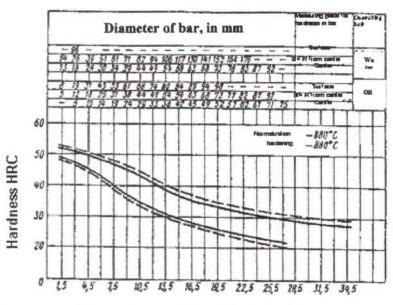
Steel of grade 27 XIP


Distance from cooled end face of sample Drawing 9

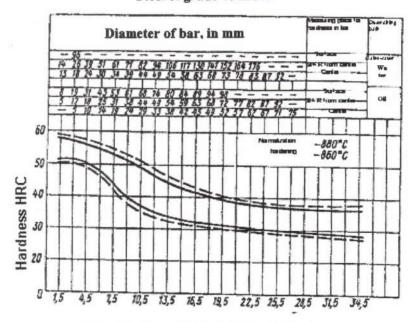
Steel of grade 30 XTT


Distance from cooled end face of sample Drawing 10

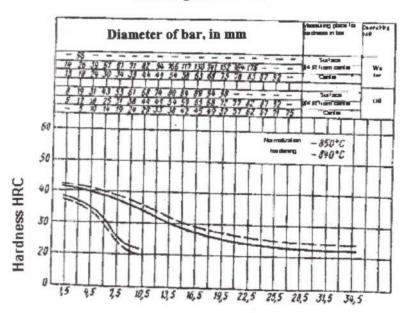
Steel of grade 25 XFM


Distance from cooled end face of sample Drawing 11

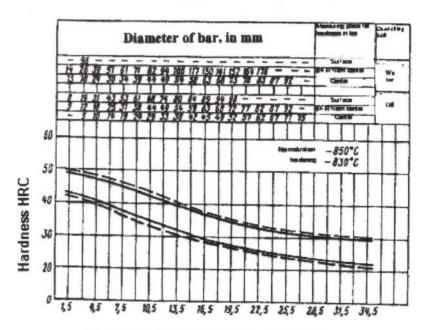
Steel of grade 38 XC


Distance from cooled end face of sample Drawing 12

Steel of grade 30 XMA

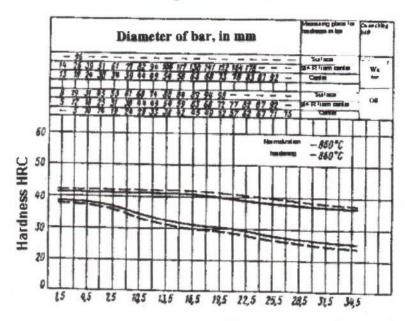

Distance from cooled end face of sample Drawing 13

Steel of grade 40 XΦA

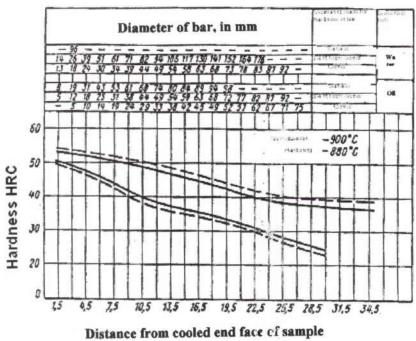


Distance from cooled end face of sample Drawing 14

Steel of grade 12 XH3A



Distance from cooled end face of sample Drawing 15


Distance from cooled end face of sample Drawing 16

Steel of grade 12 X2H4A

Distance from cooled end face of sample Drawing 17

Steel of grade 30 XICA

Drawing 18

Annexure 2

PARAMETERS OF REDUCED AND GRADE – CHARACTERISTIC RANGE (Limits of variation of hardness HRC along the length of front sample)

Distance						Har	dness fo	r harde	nability	range, l	HRC						
from]	l	2	2	1		1	2		1	2	2	1			2	
end	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	
face, in		14.340000000			1			Steel o	fgrade								
mm		15	5X			20X			30		X			35	X	X	
1.5	42	35.5	43	34.5	46	39	47.5	37.0	51.5	47.5	53.0	46.5	52.0	45.0	54.0	43	
3.0	41	32.5	43	30	43.5	34	45.0	32.0	50.0	44.0	52.0	42.5	52.0	43.0	53.0	41	
4.5	38	25.5	41	23	40	29.5	42.5	27.0	48.0	40.0	50.0	38.5	50.5	41.0	52.5	39	
6.0	34	_	37	_	36.5	25	38.5	22.5	45.5	37.0	48.0	35.0	49.5	37.0	52.0	35	
7.5	28.5	_	31	_	32.5	22	34.0	20.0	43.5	33.5	45.0	32.0	47.0	33.0	50.0	30	
9.0	24.5	-	27	_	29.5	_	30.5	_	39.5	31.0	41.0	29.0	45.0	29.0	47.0	27	
10.5	22	_	24		26.5		28.0	_	36.0	28.5	37.5	26.5	42.0	28.0	44.0	26	
12.0	20.5	_	22.5	_	24.5	_	26.5	_	33.0	26.5	34.5	24.5	39.5	25.5	42.0	23	
13.5	_	_	21	_	23	_	25.0	_	30.5	24.5	32.0	23.0	37.0	23.0	39.0	21	
15.0	_	_	20	_	22	_	24.0	_	29.0	23.0	30.0	22.0	36.0	22.0	37.0	20	
16.5		_	_	_	21.5	_	23.5	_	27.5	_	28.5	_	34.0	21.0	36.0	19	
18.0	_	_	-	_	21	_	22.5	_	26.5	_	27.5	_	33.0	20.0	34.5	18	
19.5	_	_	1,	-	20	_	22.0	_	26.0	_	27.0	_	-	_	_	_	
21.0	_	_	_	1-1	(1-	21.5	-	25.0	_	26.5	_	-	_	_	_	
24.0	_	_	_	_	_	_	_	_	24.0	-	25.0		_	_		_	
27.0	_	_	_		_	-	_	-	22.5	-	23.5				_	_	
30.0	_	_	_	-	_	_	_	_	21.0	_	22.0	_	_		_	_	
33.0	_	_	—	_		0	_	_	19.5	_	20.5	_	_	_	_		
36.0	_	_	_	_	_	-	_	_	_		_	_	_	_	_		
39.0	_	_	_	-	-	_	_	-	_	-	_	_	_	_	_	-	

¹⁻REDUCED RANGE

^{2 -} GRADE - CHARACTERISTIC RANGE

GOST 4543-71 page 60

-			4.0		
Con	***	TTO	*	•	m
T. UII	5.1 III	44.4	ы	30	ш

Distance						Har	dness fo	r harde	nability	range, l	HRC		0			
from		1	2	2	1	l		2	1		:	2	1		2	2
end	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
face, in		-						Steel o	f grade							
mm		40	X			45	5X			182	(IT			302	TT	
1.5	58.5	51	59.5	49	58	54	59	53	48	41	49	40	50.5	43.5	52	41.5
3.0	58	49.5	59	48	57.5	52.5	58.5	51.5	46	39,5	48	38	49,5	42,5	51	40.5
4.5	57	47.5	58	46.5	56.5	51	57.5	50	45	36	46	35	48.5	40.5	50	39
6.0	55.5	45	56.5	43.5	56	49.5	57	48	43	33	44.5	31	47.5	38.5	49	37
7.5	53.5	40.5	56	38	54.5	47.5	56	46	41	30	43	28	46.5	36,5	48	35
9.0	52.5	39	54	38.5	53	46,5	54	43.5	39.5	28	41	25.5	44.5	34.5	46.5	32,5
10.5	50.5	36.5	52.5	33.5	51.5	42.5	53	41	38	26.5	39.5	24	43	32.5	44.5	30.5
12.0	48	34	51	31	49.5	40	51.5	38	36.5	25	38	22.5	41.5	30.5	43	28.5
13.5	46	32.5	49	29.5	47.5	37.5	49.5	36	35.5	24	36.5	21.5	40	29	41.5	27
15.0	46.5	30.5	48	28	46	35	48	33	34	23	36	21	38	28	40	26
16.5	42.5	29.5	44.5	26.5	44	34	45.5	32.5	33	8	34.5	_	37	26.5	38.5	24
18.0	41	28	42.5	26	42	32	43.5	31	32	_	33.5	_	36	25	37.5	23
19.5	39.5	27	41	25	40.5	31	42	29.5	31	_	33	_	35	24	36.5	22
21.0	38.5	26.5	39.5	24	39	29.5	40.5	28.5	30.5	-	32	_	34	23	36	21
24.0	36.5	24.5	38	22,5	36	28	38	26.5	29	-	31	-	32	_	34	_
27.0	35	23	36,5	21.5	35	26.5	36	25	27.5	_	29.5	-	30.5	_	32.5	_
30.0	34	22	36	20	32.5	25.5	34	24	26.5	_	29	_	29.5	-	31.5	_
33.0		_	_	_	32.5	24	33	22.5	26	_	28	-	28,5	_	30,5	_
36.0	_	_	_	_	31	23	32.5	21.5	_		_		_	-	_	_
39.0	-	_	_	_	31	21.5	32.5	20.5	_	_	_	_	_	_		_

^{1 -} REDUCED RANGE

^{2 -} GRADE - CHARACTERISTIC RANGE

-								
C	A 1	n t	275	227	a 1	34	AWA.	

Distance						Ha	rdness fo	r harde	nability	range, H	IRC						
from	1	1 2 1		1 1	2 1 2					1	l	1	2				
end	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	
face, in								Steel o	f grade								
mm		203	(TP			273	КГР		25ХГМ					30X	MA		
1.5	44.5	37.5	46.0	36.0	50.5	45.0	51.5	44. 0	50.0	44.0	51.0	43. 0	52. 0	49.0	53.0	48. 0	
3. 0	44. 0	37. 0	45.5	35, 5	50. 5	45.0	51.5	44.0	49.0	42.5	50.0	41.5	51.0	47.5	52. 0	46.5	
4.5	43.5	36.5	45. 0	35. 0	50.0	44.5	51.0	43.5	48. 0	41.0	49.0	40.0	50.0	46. 0	51.0	44.5	
6. 0	43. 0	33.5	44.5	33.5	50.0	44.5	51.0	43.5	47.0	39.0	48. 0	38. 0	48.5	43.5	49.5	42.0	
7.5	42.5	33.5	44.0	32. 0	49.0	43.5	50.5	42.5	46.0	37.5	47.5	36. 0	47.0	40.0	48. 0	39. 0	
9. 0	41.0	32.0	43.0	30. 0	48. 5	43.5	50. 0	42.0	45. 0	36.5	46.5	35. 0	45.0	37.0	46.5	35.5	
10.5	40. 0	30.0	42.5	27.5	48.0	43.0	49.5	41.5	44.0	35.5	45.5	34.0	43.5	34.5	45. 0	33.5	
12.0	39.0	27.5	41.5	25.0	47.5	41.5	49.0	40.0	43.0	34.5	45.0	33. 0	41.5	33. 0	43. 0	31.5	
13.5	37.5	25.5	40.0	23.0	47.0	40.0	48, 5	38, 5	42.5	33.5	44. 0	32. 0	39.0	31.5	40, 5	30.0	
15.0	37.0	24.0	39.0	22.0	46.5	39.0	48. 0	37.5	42.0	33.0	43.0	30.5	36.5	29.5	38.0	28. 0	
16.5	35. 0	_	37.0		46. 0	36.5	47.5	35.0	41.0	31.5	42.5	29.5	35.5	28, 5	37.0	27.0	
18.0	34.0	_	36.5	1	45. 0	35.5	46.5	33. 0	40.5	31.0	42.0	28, 5	34.5	27.5	36.0	26.0	
19.5	33.0	_	34.0	_	44.0	34.0	46. 0	32. 0	39.5	30.0	41.0	27.5	33.5	26.5	35.0	25.0	
21.0	31.5	_	33.0	_	43. 0	32. 0	44.5	30. 0	38, 5	29.0	40.5	26.5	32.5	25.5	34.0	24.5	
24.0	29.5	_	31.0	_	41.5	29.0	42.5	27.0	37.5	27.0	39.5	25, 0	31.0	24.0	32.5	22.0	
27.0	28.0	_	29.5		40. 0	26.5	41.0	25.0	36, 5	26.0	38.5	24.5	30.0	22.0	32.0	20. 5	
30.0	26.5	_	28.5		38. 0	24.0	39. 0	23.0	35, 5	25.0	37.5	23.5	29.0	_	31.0	_	
33.0	25, 5	_	27.5	_	36, 0	22,5	37.5	21.5	34.5	24.0	36.0	22,5	28.0		30,0	_	
36.0	25.0	_	27.0	_	34.0	21.5	35.0	20.0	33.5	22.5	35.0	21.0	_	-	_	_	

^{1 -} REDUCED RANGE

^{2 -} GRADE - CHARACTERISTIC RANGE

~				
Con	tim	110	n	ΛT
1000		ua		v

Distance					Ha	rdness for	hardenabili	ity range, H	RC			
from	1	l	- :	2	1		2	2	1		2	
end face,	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
in mm				Vi.			Steel of grad	de				
		38XC				40X	ФА			12XH	I3A	
1.5	55	48	56	46. 5	58	51. 5	59. 5	50	41	38	41.5	37
3. 0	55	47.5	56	45. 5	57	51.5	58. 5	50	40, 5	36, 5	41.5	35, 5
4.5	54. 5	46. 5	56	45	56	50. 5	57. 5	49	39.5	34. 5	40. 5	33
6. 0	54	45. 5	55. 5	44	54. 5	48	56. 5	46. 5	38. 5	31	39.5	29. 5
7.5	53, 5	44. 5	55	43	53. 5	43, 5	55	42	36. 5	25, 5	39	23
9. 0	53	43.5	54.5	41.5	51	39.5	53	38	35. 5	22, 5	37	21
10. 5	52. 5	42	54	40	49	37	51	35	34		35. 5	-
12. 0	52	40.5	53. 5	38. 5	47.5	35	49	33. 5	32		33. 5	
13, 5	51	39	53	37	44. 5	34	46. 5	32, 5	30		31.5	_
15. 0	50	38	52	36	43.5	33, 5	45	32	28. 5	_	30	_
16. 5	49	36. 5	51	34. 5	41.5	32.5	43	31	27	-	29	_
18. 0	48	35. 5	50	34	40. 5	32	41. 5	30. 5	26	_	28	_
19.5	47.5	35	49.5	33	39	31.5	40. 5	30	25		27	
21. 0	46. 5	34. 5	49	32. 5	38. 5	31	39. 5	29. 5	24. 5		26.5	_
24. 0	45	33	47.5	31	37.5	30	38. 5	29	23. 5	_	25. 5	_
27. 0	44	32. 5	46.5	30. 5	36. 5	29. 5	37. 5	28. 5	23	_	24. 5	_
30. 0	43	32	45	30	36. 5	29.5	38	28	22.5	_	24	_
33.0	42.5	29	45	27	36. 5	28. 5	37.5	27.5	22.5	_	24	_
36. 0	42	25	44.5	23	36. 5	28	37. 5	2.7	_	_		_
39. 0	41	22	44	20	36. 5	25, 5	37.5	25	_	_		_
42. 0	_				36. 5	23	37. 5	22.5	_	_		_
45. 0	_				36. 5	21	37.5	20		_	-	_
48. 0			_	_	_	_	3		_	_		_

^{1 -} REDUCED RANGE

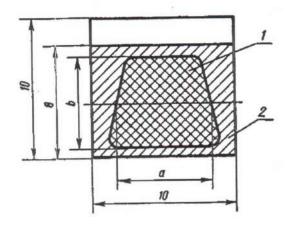
^{2 -} GRADE - CHARACTERISTIC RANGE

-			- 41	
Co	TICE	75.11	o tr	IOT
		88 S.A	$a_{\mathbf{L}}$	1572

Distance					На	rdness for	hardenabil	ity range, H	RC				
from end face, in	1	1		2	1		2		1	L	2		
mm	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	
							Steel of grad	de					
		20XH3A				12X2	H4A			30XI	CA		
1. 5.	49	43	49.5	41.5	41. 5	37.5	42	37	53	50	54	49	
3. 0	48	41.5	49	40. 5	41.5	36. 5	42	36	52	49	53	47.5	
4.5	47.5	40.5	48. 5	39.5	41. 5	36. 5	42	36	51.5	47	52	46	
6. 0	46. 5	39	47.5	37.5	41. 5	36. 5	42	36	50. 5	45, 5	51.5	44. 5	
7.5	44. 5	37.5	46	36	41. 5	37	42	36	50	44	51	43	
9.0	43.5	35. 5	44.5	34	41. 5	35	42	34	49.5	41.5	51	40	
10.5	42	33	43	32.5	41. 5	33. 5	42	32. 5	48. 5	40. 5	50	38	
12.0	40	32. 5	41.5	31	41. 5	33	42	32	47.5	38	49.5	36. 5	
13.5	39	31.5	40	30	41. 5	32, 5	42	31. 5	46. 5	37	48. 5	35. 5	
15. 0	37.5	30. 5	39	29	41.5	31	42	30	45. 5	36. 5	47	35	
16. 5	36	29. 5	37.5	27.5	41.5	30.5	42	29.5	44. 5	35. 5	46	34. 5	
18. 0	35	28	36	27	40	30	41	29	43	34. 5	45	33.5	
19.5	34	27	35	26	39, 5	30	41	29	42	33, 5	44	32	
21. 0	33	26. 5	34	25. 5	39	29. 5	40. 5	28. 5	41	32	43	31	
24. 0	31	25	32	24, 5	38	28. 5	40	26. 5	39. 5	30	41.5	28	
27. 0	30	24.5	31.5	23, 5	38	27	40	26	38	27.5	40	25	
30. 0	30	23	31	22	37. 5	27.5	39	26	37	25	39	23	
33. 0	29.5	22. 5	30. 5	21	36	26	38	24	37	22	39	20.5	
36. 0	29	22. 5	30	21	_	_						_	
39. 0	28	21.5	29	20	_	_	_	_	_	_	_	_	
42.0	28	21. 5	29	20	_	-	_	_			_		
45. 0	28	21.5	29	20					_	_		_	
48. 0	27	21. 5	28	20	_	_	_	ş	s	-	_	_	

^{1 -} REDUCED RANGE

^{2 -} GRADE - CHARACTERISTIC RANGE


ANNEXURE 3
Recommended

METHOD FOR DETERMINING THE PERCENTAGE VISCOUS COMPONENT IN FRACTURE OF IMPACT SAMPLES (FOR HEAT TREATABLE STEEL)

 Percentage of viscous components in fracture of impact samples characterizes the resistance of steel to brittle fractures.

Brittle component in the fracture of impact sample with section 8 x 10 mm has the type of trapezoid (drawing 1). Area of this trapezoid F_1 is set as per the degree of increase in fraction of brittle component (drawing 2).

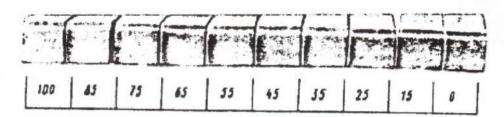
Diagram of impact fracture

1 – Area of fracture to be covered by brittle component. 2 – Area to be covered by viscous component

Drawing 1.

As per rule viscous component is located around brittle component. Area F₁, occupied by brittle component, is defined as the product of mean line of trapezium a to height b (refer to drawing 1). Ratio of this area to entire area of fracture F (80 mm²) comprises the portion of brittle component in fracture (X) in percentages:

$$X = \frac{F_1}{F} \bullet 100$$


Correspondingly, viscous component (B) in the percentages is equal: B = (100 - X)

2. Measurement of the parameters (a, b) area, occupied by brittle components, is carried out by scale with accuracy up to 0.5 mm; in this case measurement error should not exceed 5 %. Knowing parameters a and b, percentage of component is determined according to table.

ئە پ					Via	cous	com	pone	nt in	the fi	ractu	re of	impa	et sam	ples,	%			
Height of trapezium in mm		Mean line of trapezium a, in mm																	
H I	1. 0	1. 5	2. 0	2. 5	3. 0	3. 5	4. 0	4. 5	5. 0	5. 5	6. 0	6. 5	7. 0	7. 5	8. 0	8. 5	9. 0	9. 5	10
1.0	99	98	98	97	96	96	95	94	94	93	92	92	91	91	90	89	89	88	88
1.5	98	97	96	95	94	93	92	92	91	90	89	88	87	86	85	84	83	82	81
2. 0	98	96	95	94	92	91	90	89	88	86	85	84	82	81	80	79	77	76	75
2. 5	97	95	94	92	91	89	88	86	84	83	81	80	78	77	75	73	72	70	69
3. 0	96	94	92	91	89	87	85	83	81	79	77	76	74	72	70	68	66	64	62
3.5	96	93	91	89	87	85	82	80	78	76	74	72	69	67	65	63	61	58	56
4. 0	95	92	90	88	85	82	80	77	75	72	70	67	65	62	60	57	55	52	50
4. 5	94	92	89	86	83	80	77	75	72	69	66	63	61	58	55	52	49	46	44
5. 0	94	91	88	85	81	78	75	72	69	66	62	59	56	53	50	47	44	41	37
5. 5	93	90	86	83	79	76	72	69	66	62	59	55	52	48	45	42	38	35	31
6. 0	92	89	85	81	77	74	70	66	62	59	55	51	47	44	40	36	33	29	25
6. 5	92	88	84	80	76	72	67	63	59	55	51	47	43	39	35	31	27	23	19
7. 0	91	87	82	78	74	69	65	61	56	52	47	43	39	34	30	26	21	17	12
7.5	91	86	81	77	72	67	62	58	53	48	44	39	34	30	25	20	16	11	6
8. 0	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0

In such cases, when high strength is not required, percentage of viscous component is permitted to be determined with the help of visual comparison of the form of fracture (on brittle component) with scale (refer to drawing 2).

Scale for the determination of viscosity of component in the fracture of impact sample

Drawing 2

SUPERSEDES GOST 1050 – 60 (in the part of stamp 15 Γ , 20 Γ , 25 Γ , 30 Γ , 25 Γ , 40 Γ , 45 Γ , 50 Γ);

GOST 1051 - 59 (in the part of alloyed steel, except surface quality and packing);

GOST 4543 - 61

REFERENCE OF NORMATIVE - TECHNICAL DOCUMENTATION

Code of HTA, in which reference is given	Point number, Sub point
GOST 8.001 – 80	4.2
GOST 8.323 – 78	4.2
GOST 162 – 80	4.2
GOST 166 – 80	4.2
GOST 427 – 75	4.2
GOST 2216 – 84	4.2
GOST 2590 - 88	2.1
GOST 2591 - 88	2.1
GOST 2879 - 88	2.1
GOST 3749 – 77	4.2
GOST 5378 – 88	4.2
GOST 6507 - 78	4.2
GOST 7502 – 89	4.2
GOST 12344 – 88	4.1
GOST 12345 – 88	4.1
GOST 12349 - 83	4.1
GOST 12350 - 78	4.1
GOST 12351 - 81	4.1
GOST 12359 - 81	4.1
GOST 18895 – 81	4.1
GOST 22235 - 76	5.1.1
GOST 26877 - 86	4.2

Republication with Amendment No. 1, 2, 3, 4, 5, approved in 1977, July 1982, February 1987, June 1987. (MYC 5-77, 11-82, 5-87, 10-87).