CBSE Sample Paper -03

SUMMATIVE ASSESSMENT -I

Class - X Mathematics

Time allowed: 3 hours
ANSWERS
Maximum Marks: 90

SECTION - A

1. $\frac{6}{1250}=\frac{3}{625}=\frac{3}{5^{4}}=\frac{2^{4}}{2^{4}}=\frac{48}{(5 \times 2)^{4}}=\frac{48}{10^{4}}=0.0048$

This representation will terminate after 4 decimal places.
2. We have $\mathrm{AC}=\mathrm{BC}$ and $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$

Now, $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$
$\Rightarrow \quad \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{AC}^{2}$
$\Rightarrow \quad \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}$

$$
[\because \mathrm{AC}=\mathrm{BC}(\text { (Given })]
$$

$\Rightarrow \quad \triangle \mathrm{ABC}$ is a right triangle right angled at C .
3. $\sin A+\sin ^{2} A=1 \Rightarrow \sin a=1-\sin ^{2} a=\cos ^{4} A=1$

$$
\therefore \quad \cos ^{2} a+\cos ^{4} a=\sin A+\sin ^{4} A=1 .
$$

4. $\cot B=\cot \left(90^{\circ}-A\right) \quad\left(\because A+B=90^{\circ}\right)$
$=\tan A \quad\left(\because \cot \left(90^{\circ}-\theta\right)=\tan \theta\right)$
$=\frac{3}{4}$

SECTION - B

5. We observe that $y=a x^{2}+b x+c$ represents a parabola opening downwards. Therefore, $a<0$.

We also observe that the vertex of the parabola is in first quadrant.
$\therefore-\frac{b}{2 a}>0 \Rightarrow-b<0 \Rightarrow b>0$
Parabola $y=a x^{2}$ ـ. $b x+c$ cuts Y-axis at P. On Y-axis, we have $x=0$.
Putting $x=0$ in $y=a x^{2}+b x+c$, we get $y=c$.
So, the coordinates of P are $(0, c)$. As P lies on the positive direction of Y -axis, therefore, $c>0$.
Hence, $a<0, b>0$ and $c>0$.
6.

Calculation of arithmetic mean

Weight (Kg)	Frequency	$f_{i} x_{i}$
x_{i}	f_{i}	

67	4	268		
70	3	210		
72	2	144		
73	2	146		
75	1	75		
$\mathrm{~N}=\sum f_{i}=12$				$\sum f_{i} x_{i}=843$

$\therefore \quad$ Mean $=\bar{X}=\frac{\sum f_{i} x_{i}}{N}=\frac{843}{12}=70.25$
7. In triangles ABE and CFB, we have
$\angle \mathrm{AEB}=\angle \mathrm{CBF}$
$\angle \mathrm{A}=\angle \mathrm{C}$
[Alternate angles]
[Opposite angles of a parallelogram]

Thus, by AA-criterion of similarity, we have
$\triangle \mathrm{ABE} \sim \triangle \mathrm{CFB}$
8. In $\triangle \mathrm{ABC}$, we have
$\mathrm{AB}=20, \angle \mathrm{BAC}=60^{\circ}$
$\therefore \quad \tan \angle \mathrm{BAC}=\frac{\mathrm{BC}}{\mathrm{AB}}$
$\Rightarrow \quad \tan 60^{\circ}=\frac{\mathrm{BC}}{20}$
$\Rightarrow \quad \sqrt{3}=\frac{\mathrm{BC}}{20} \quad \Rightarrow \quad \mathrm{BC}=2 \mathrm{C} \sqrt{3} \mathrm{~cm}$
9. Required number of minutes is the LCM of 18 and 12.

We have,
$18=2 \times 3^{2}$ and $12=2^{2} \times 3$
$\therefore \quad$ LCM of 18 and $12=2^{2} \times 3^{2}=36$
Thus, Prenu and Raj will meet again at the starting point after 36 minutes.
10. If α, β and γ are the zeros of a cubic polynomial $f(x)$, then
$f(x)=k\left\{x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma\right\}$,
where k is any non-zero real number.
Here, $\alpha+\beta+\gamma=2, \alpha \beta+\beta \gamma+\gamma \alpha=-7$ and $\alpha \beta \gamma=-14$
$\therefore \quad f(x)=k\left(x^{3}-2 x^{2}-7 x+14\right)$, where k is any non-zero real number.

SECTION - C

11. We know that an old positive integer n is of the form $(4 q+1)$ or $(4 q+3)$ for some integer q.

Case I When $\mathrm{n}=(4 \mathrm{q}+1)$
In this case
$n^{2}-1=(4 q+1)^{2}-1=16 q^{2}+8 q=8 q(2 q+1)$
Which is clearly divisible by 8 .
Case II When $\mathrm{n}=(4 \mathrm{q}+3)$
In this case, We have
$n^{2}-1=(4 q+3)^{2}-1=16 q^{2}+14 q+8=8\left(2 q^{2}+3 q+1\right)$
Which is clearly divisible by 8 .
12. We have find $\cos ^{2} A$ in term of m and n. This means that the angle B is io $b \in \in$ liminated from the given relations.

Now, $\tan \mathrm{A}=\mathrm{n} \tan \mathrm{B}$
$\tan B=\frac{1}{n} \tan A=\cot B=\frac{n}{\tan A}$
and $\sin A=m \sin B$
$\sin B=\frac{1}{m} \sin A=\cos e c B=\frac{m}{\sin A}$
Substituting the values of $\cot B$ and cosec E in $\operatorname{cosec}^{2} B-\cot ^{2} B=1$, we get

$$
\begin{aligned}
& \frac{m^{2}}{\sin ^{2} A}-\frac{n^{2}}{\tan ^{2} A}=1 \\
& \frac{m^{2}}{\sin ^{2} A}-\frac{n^{2} \cos ^{2} A}{\sin ^{2} A}=1 \\
& \frac{m^{2}-n^{2} \cos ^{2} A}{\sin ^{2} A}=1 \\
& m^{2}-n^{2} \cos ^{2} A=\sin ^{2} A \\
& m^{2}-n^{2} \cos ^{2} A=1-\cos ^{2} A \\
& m^{2}-1=n^{2} \cos ^{2}-\cos ^{2} A \\
& m^{2}-1=\left(n^{2}-1\right) \cos ^{2} A \\
& \frac{m^{2}-1}{n^{2}-1}=\cos ^{2} A
\end{aligned}
$$

13. We have given $\tan \theta+\sin \theta=m$, and $\tan \theta-\sin \theta=n$, then

$$
\begin{aligned}
& \text { L.H.S }=\left(m^{2}-n^{2}\right)=(\tan \theta+\sin \theta)^{2}-(\tan \theta-\sin \theta)^{2} \\
& \tan ^{2} \theta+\sin ^{2} \theta+2 \tan \theta \sin \theta-\tan ^{2} \theta-\sin ^{2} \theta+2 \tan \theta \sin \theta \\
& =4 \tan \theta \sin \theta=4 \sqrt{\tan ^{2} \theta \sin ^{2} \theta} \\
& =4 \sqrt{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\left(1-\cos ^{2} \theta\right)} \\
& =4 \sqrt{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\sin ^{2} \theta} \\
& =4 \sqrt{\tan ^{2} \theta-\sin ^{2} \theta} \\
& =4 \sqrt{(\tan \theta-\sin \theta)(\tan \theta+\sin \theta)} \\
& =4 \sqrt{m n}=\text { R.H.S }
\end{aligned}
$$

14. Let the speed of faster car at $\mathrm{A}=x \mathrm{~km} / \mathrm{hr}$ and the speed of slowiver car at $\mathrm{B}=y \mathrm{~km} . \mathrm{hr}$.

Case 1: When they travel in same direction

Distance covered by faster car in 7 hours $=7 x \mathrm{~km}$
Distance covered by slower car in 7 hoors $=7 y \mathrm{~km}$

$$
\begin{array}{ll}
\Rightarrow & 7 x=7 y+70 \\
\Rightarrow & 7(x-y)=70 \\
\Rightarrow & x-y=10 \tag{i}
\end{array}
$$

Case 2: When they travel in opposice direction

Distance travelled by faster car in 1 hour $=x \mathrm{~km}$
Distance travelled by slower car in 1 hour $=y \mathrm{~km}$
$\Rightarrow \quad x+y=70$
Adding (i) and (ii), we get

$$
2 x=80 \quad \Rightarrow \quad x=40
$$

Substituting $x=40$ in (i), we get

$$
40-y=10 \quad \Rightarrow \quad y=40-10=30
$$

$\therefore \quad$ Speeds of cars would be $40 \mathrm{~km} / \mathrm{hr}$ and $30 \mathrm{~km} / \mathrm{hr}$.
15. $x^{3}-3 x^{2}+x+1$ is a cubic polynomial.

$$
\begin{array}{ll}
\therefore & \text { Sum of its zeros }=\frac{-\left(\text { coefficient of } x^{2}\right)}{\text { coefficient of } x^{3}}=\frac{-(-3)}{1}=3 \\
\Rightarrow & a-b+a+a+b=3 \\
\Rightarrow & 3 a=3 \\
\Rightarrow & a=3
\end{array}
$$

Also, product of its zeros $=\frac{-(\text { constant term })}{\text { coefficient of } x^{3}}=\frac{-1}{1}=-1$
$\Rightarrow \quad(a-b) \times a \times(a+b)=-1$
$\Rightarrow \quad a\left(a^{2}-b^{2}\right)=-1$
$\Rightarrow \quad 1\left(1-b^{2}\right)=-1$
$\Rightarrow \quad 1-b^{2}=-1$
$\Rightarrow \quad b^{2}=2$
$\Rightarrow \quad b= \pm \sqrt{2}$
Thus, $a=1$ and $b= \pm \sqrt{2}$.
16. Given: A quadrilateral $A B C D$ whose diagonals $A C$ and $B C$ intersect at O such that

$$
\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}}
$$

To prove: ABCD is a trapezium.
Construction: Through 0, draw DE $\|$ A B.

$\therefore \quad$ By Basic Froporcionality Theorem, we have
$\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BE}}{\mathrm{EC}}$
But,
$\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}}$
[Given]
$\therefore \quad \frac{\mathrm{BE}}{\mathrm{EC}}=\frac{\mathrm{BO}}{\mathrm{OD}}$
Now, in $\triangle B C D$, we have $\frac{B E}{E C}=\frac{B O}{O D}$
$\therefore \quad$ By Basic Proportionality Theorem, we have
OE || DC

Now,

$$
\mathrm{OE} \| \mathrm{AB}
$$

[By construction]
and,
OE || DC
$\therefore \quad \mathrm{AB}|\mid \mathrm{DC}$
Thus, ABCD is a trapezium.
17. Since, $\triangle F E C \cong \triangle G D B$
$\Rightarrow E C=B D$
It is given that
$\angle 1=\angle 2$
$\Rightarrow A E=A D \quad$ [Sides opposite to equal angles are equal]
From (i) and (ii)
$\frac{A E}{E C}=\frac{A D}{B D}$
$\Rightarrow D E \| B C \quad$ [By the converse of basic proportionaity theorem]
$\Rightarrow \angle 1=\angle 2$ and $\angle 2=\angle 4 \quad$ [Corresponding]
Thus, in $\Delta^{\prime} s$ ADE and $A B C$, we have
$\angle A=\angle A \quad$ [Common]
$\angle 1=\angle 3$
$\angle 2=\angle 4 \quad[\mathrm{Pr}$ oved above]
So, by AAA criterion of similarity, we trave
$\triangle A D E \sim \triangle A B C$
18. We have,
$\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}=\frac{1-\sqrt{3}}{1+\sqrt{3}} \Rightarrow \frac{\frac{\cos \theta-\sin \theta}{\cos \theta}}{\frac{\cos \theta+\sin \theta}{\cos \theta}}=\frac{1-\sqrt{3}}{1+\sqrt{3}}$
[Dividing numerator \& denominator of the LHS by $\cos \theta$]
$\Rightarrow \frac{1-\tan \theta}{1+\tan \theta}=\frac{1-\sqrt{3}}{1+\sqrt{3}}$
On comparing we get,
$\Rightarrow \tan \theta=\sqrt{3} \Rightarrow \tan \theta=\tan 60^{\circ} \quad \Rightarrow \theta=60^{\circ}$
19. Here, the maximum class frequency is 61 and the class corresponding to this frequency is 60-80. So, the model class is 60-80.

Here, $l=60, h=20, f_{1}=52, f_{0}=38$
\therefore Model $=l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h$
$=60+\frac{31-52}{2 \times 61-52-38} \times 20=60+\frac{9}{122-90} \times 20$
$=60+\frac{9}{32} \times 20=60+\frac{45}{8}$
$=60+5.625=65.625$
Hence, model lifetime of the components is 65.625 hours.
20. Let the tens and units digits of the required number be x and y, respectively. Then $x y=14$.

Required number $=(10 x+y)$
Number obtained on reversing its digits $=(10 y+x)$
$\therefore \quad(10 x+y)+45=(10 y+x)$
$\Rightarrow \quad 9(y-x)=45$
$\Rightarrow \quad y-x=45$
Now, $(y+x)^{2}-(y-x)^{2}=4 x y$

$$
\begin{align*}
\Rightarrow \quad(y+x) & =\sqrt{(y-x)^{2}+4 x y} \\
& =\sqrt{25+4 \times 14}=\sqrt{81} \\
\Rightarrow \quad y+x= & 9 \tag{ii}
\end{align*}
$$

On adding (i) and (ii), we get

$$
2 y=14 \quad \Rightarrow \quad y=7
$$

Putting $y=7$ in (ii), we get

$$
\begin{array}{ll}
& 7+x=9 \quad \Rightarrow \quad x=9-7=2 \\
\therefore & x=2 \text { and } y=9
\end{array}
$$

SECTION - D

21. \quad Given, $\quad a+b k^{\frac{1}{3}}+c k^{\frac{2}{3}}=0$,

Multiplying both sides by $k^{\frac{1}{3}}$, we have
$b k^{\frac{1}{3}}+c k^{\frac{2}{3}}+c k=0$,
Multiplying (i) by b and (ii) by c and then subtracting, we have
$\left.\left(a b+b^{2} k^{1 / 2}+b c k^{2 / 3}\right)-a c k^{1 / 3}+b c k^{2 / 3}+c^{2} k\right)=0$
$\Rightarrow\left(b^{2}-a c\right) k^{1 / 3}+a b-c^{2} k=0$
$\Rightarrow b^{2}-a c=0$ and $a b-c^{2} k=0\left[\right.$ Since $\mathrm{k}^{1 / 3}$ is irrational]
$\Rightarrow \mathrm{b}^{2}-a c=0$ and $a b=c^{2} k$
$\Rightarrow b^{2}=a c$ and $a^{2} b^{2}=c^{4} k^{2}$
$\Rightarrow a^{2}(a c)=c^{4} k^{2} \quad\left[\right.$ By putting $\mathrm{b}^{2}=\mathrm{ac}$ in $\left.\mathrm{a}^{2} b^{2}=c^{4} k^{2}\right]$
$\Rightarrow a^{3} c-k^{2} c^{4}=0 \Rightarrow\left(a^{3}-k^{2} c^{3}\right) c=0$
$\Rightarrow a^{3}-k^{2} c^{3}=0$ or $c=o$
Now, $a^{3}-k^{2} c^{3}=0$
$\Rightarrow k^{2}=\frac{a^{3}}{c^{3}} \Rightarrow\left(k^{2}\right)^{1 / 3}=\left(\frac{a^{3}}{c^{3}}\right) \Rightarrow k^{2 / 3}=\frac{a}{c}$
This is impossible as $k^{2 / 3}$ is irrational and $\frac{a}{c}$ is rational.
$\therefore \quad a^{3}-k^{2} c^{3} \neq 0$
Hence, c=0
Substituting $\mathrm{c}=0$ in $\mathrm{b}^{2}-\mathrm{ac}=0$, we get $\mathrm{b}=0$
Substituting $\mathrm{b}=0$ and $\mathrm{c}=0$ in $a+b k^{1 / 3}+c k^{2 / 3}=0$, we get $\mathrm{a}=0$
Hence, $\mathrm{c}=\mathrm{b}=\mathrm{c}=0$.
22. Let $p(x)=x^{3}-3 x^{2}+x+2$
$q(x)=x-2$
$r(x)=-2 x+4$
by division algorithm,
$p(x)=g(x) \times q(x)+r(x)$
$\Rightarrow \quad g(x) \times q(x)=\rho(x)-r(x)$
$\Rightarrow \quad g(x)(x-2)=x^{2}-3 x^{2}+x+2-(-2 x+4)$
$=x^{3}-3 x^{2}+x+2+2 x-4$
$=x^{3}-3 x^{2}+3 x-2$
$\Rightarrow \quad g(x)$ is a factor of $x^{3}-3 x^{2}+3 x-2$ other than $(x-2)$.
Dividing $x^{3}-3 x^{2}+3 x-2$ by $(x-2)$, we obtain $g(x)$ as follows:

$$
\begin{aligned}
& x - 2 \longdiv { x ^ { 2 } - x + 1 } \begin{array} { r }
{ x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2 }
\end{array} \\
& x^{3}-2 x^{2} \\
& \frac{-+}{-x^{2}+3 x-2} \\
& -x^{2}+2 x \\
& \frac{+-}{x-2} \\
& x-2 \\
& \frac{-+}{0} \\
& \therefore \quad g(x)=x^{2}-x+1
\end{aligned}
$$

23. Theorem: In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Given: A right-angled triangle ABC in which $\angle \mathrm{B}=9 \mathrm{~B}^{\circ}$.
To prove: $(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Perpendicular })^{2}$
i.e.,

$$
\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}
$$

Construction: From B, draw $\mathrm{BD} \perp \mathrm{AC}$.
Proof: In triangles ADB and ABC, we tiave
$\angle \mathrm{ADB}=\angle \mathrm{ABC}$
[Each equal to 90°]
and, $\angle \mathrm{A}=\angle \mathrm{A}$
[Common]
So, by AA-similarity criterion, we have
$\Delta \mathrm{ADB} \sim \triangle \mathrm{ABC}$
$\Rightarrow \quad \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AB}}{\mathrm{AC}} \quad[\because$ In similar triangles corresponding sides are proportional $]$
$\Rightarrow \quad \mathrm{AB}^{2}=\mathrm{AD} \times \mathrm{AC}$
In triangles BDC and ABC , we have
$\angle \mathrm{CDB}=\angle \mathrm{ABC}$
[Each equal to 90°]
and, $\angle \mathrm{C}=\angle \mathrm{C}$
[Common]
So, by AA-similarity criterion, we have
$\Delta B D C \sim A B C$
$\Rightarrow \quad \frac{\mathrm{DC}}{\mathrm{BC}}=\frac{\mathrm{BC}}{\mathrm{AC}} \quad[\because$ In similar triangles corresponding sides are proportional $]$
$\Rightarrow \quad \mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{DC}$
Adding equations (i) and (ii), we get
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AD} \times \mathrm{AC}+\mathrm{AC} \times \mathrm{DC}$
$\Rightarrow \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}(\mathrm{AD}+\mathrm{DC})$
$\Rightarrow \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{AC}$
$\Rightarrow \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
Or, $\quad \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
24. Let the number of students be x and the number of rows be y.

Then, number of students in each row $=\frac{x}{y}$
When one student is extra in each row, there are 2 rows less, i.e., when each row has $\left(\frac{x}{y}+1\right)$ students, the number of rows is $(y-2)$.
$\therefore \quad$ Total number of students $=$ No. of rows \times No. of students in each row
$\Rightarrow \quad x=\left(\frac{x}{y}+1\right)(y-2)$
$\Rightarrow \quad x=x-\frac{2 x}{y}+y-2$
$\Rightarrow \quad-\frac{2 x}{y}+y-2=0$
If one student is less in each row, then there are 3 rows more, i.e., when each row has $\left(\frac{x}{y}-1\right)$ students, the nurnber of rows is $(y+3)$.
$\therefore \quad$ Total number of stadents $=$ No. of rows \times No. of students in each row
$\Rightarrow \quad x=\left(\frac{x}{y}-1\right)(y+3)$
$\Rightarrow \quad x=x+\frac{3 x}{y}-y-3$
$\Rightarrow \quad \frac{3 x}{y}-y-3=0$
Putting $\frac{x}{y}=u$ in (i) and (ii), we get

$$
\begin{equation*}
-2 u+y-2=0 \tag{iii}
\end{equation*}
$$

and, $\quad 3 u-y-3=0$

Adding (iii) and (iv), we get

$$
u-5=0 \quad \Rightarrow \quad u=5
$$

Putting $u=5$ in (iii), we get $\mathrm{y}=12$
Now, $u=5 \quad \Rightarrow \quad \frac{x}{y}=5 \quad \Rightarrow \quad \frac{x}{12}=5 \quad \Rightarrow \quad x=60$
Thus, the number of students in the class is 60 .
25. Consider two right triangles $A B C$ and $P Q R$ such that $\sin B=\sin Q$.

We have,
$\sin B=\frac{A C}{A B}$ and $\sin Q=\frac{P R}{P Q}$
$\therefore \quad \sin B=\sin Q$
$\Rightarrow \quad \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\mathrm{PR}}{\mathrm{PQ}}$
$\Rightarrow \quad \frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AB}}{\mathrm{PQ}}=k$ (say)
$\Rightarrow \quad \mathrm{AC}=k \mathrm{PR}$ and $\mathrm{AB}=k \mathrm{PQ}$
Using Pythagoras theorem in triangles ABC and PQR , we have

$$
\begin{align*}
& \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2} \text { and } \mathrm{PQ}^{2}=\mathrm{PR}^{2}+\mathrm{QR}^{2} \\
\Rightarrow \quad & \mathrm{BC}=\sqrt{\mathrm{AB}^{2}-\mathrm{AC}^{2}} \text { and } \mathrm{QR}=\sqrt{\mathrm{PQ}^{2}-\mathrm{PR}^{2}} \\
\Rightarrow \quad & \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\sqrt{\mathrm{AB}^{2}-\mathrm{AC}^{2}}}{\sqrt{\mathrm{PQ}^{2}-\mathrm{PR}^{2}}} \\
= & \frac{\sqrt{k^{2} \mathrm{PQ}^{2}-\mathrm{k}^{2} \mathrm{PR}^{2}}}{\sqrt{\mathrm{PQ}^{2}-\mathrm{PR}^{2}}} \\
= & \frac{k \sqrt{\mathrm{PQ}^{2}-\mathrm{PR}^{2}}}{\sqrt{\mathrm{PQ}^{2}-\mathrm{PR}^{2}}}=k \tag{iii}
\end{align*}
$$

From (i) and (iii), we have
$\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}$
$\Rightarrow \quad \triangle \mathrm{ACB} \sim \Delta \mathrm{PRQ}$
$\Rightarrow \quad \angle \mathrm{B}=\angle \mathrm{Q}$
26. The given system of equations may be written as
$(a-b) x+(a+b) y-\left(a^{2}-2 a b-b^{2}\right)=0$
$(a+b) x+(a+b) y-\left(a^{2}+b^{2}\right)=0$
By cross-multiplication, we have

$$
\begin{aligned}
& \frac{x}{(a+b) \times\left(a^{2}+b^{2}\right)-(a+b) \times-\left(a^{2}-2 a b-b^{2}\right)}=\frac{-y}{(a-b) \times-\left(a^{2}+b^{2}\right)-(a+b) \times-\left(a^{2}-2 a b-b^{2}\right)}=\frac{1}{(a-b)(a+b)-(a+b)^{2}} \\
& \Rightarrow \quad \frac{x}{-(a+b)\left(a^{2}+b^{2}\right)+(a+b)\left(a^{2}-2 a b-b^{2}\right)}=\frac{x}{-(a-b)\left(a^{2}+b^{2}\right)+(a+b)\left(a^{2}-2 a b-b^{2}\right)}=\frac{1}{(a-b)(a+b)-(a+b)^{2}} \\
& \Rightarrow \quad \frac{-y}{(a+b)\left\{\left(a^{2}+b^{2}\right)+\left(a^{2}-2 a b-b^{2}\right)\right\}}=\frac{x}{(a+b)\left(a^{2}-2 a b-b^{2}\right)-(a-b)\left(a^{2}+b^{2}\right)}=\frac{1}{(a+b)(a-b-a-b)} \\
& \Rightarrow \quad \frac{x}{(a+b)\left(-2 a b-2 b^{2}\right)}=\frac{-y}{a^{3}-a^{2} b-3 a b^{2}-b^{3}-a^{3}-a b^{2}+a^{2} b+b^{3}}=\frac{1}{-(a+b) 2 b} \\
& \Rightarrow \quad \frac{x}{-2 b(a+b)^{2}}=\frac{-y}{-4 a b^{2}}=\frac{1}{-2 b(a+b)} \\
& \Rightarrow \quad x=\frac{-2 b(a+b)^{2}}{-2 b(a+b)}=a+b^{2} \text { and } y=\frac{4 a b^{2}}{-2 b(a+b)}=\frac{-2 a b}{a+b}
\end{aligned}
$$

Hence, the solution of the given system of equaiions is $x=a+b, y=\frac{-2 a b}{a+b}$.
27. To draw the required ogive, we plot the points $(38,0),(40,3),(44,9),(46,14),(48,28),(50$, $32)$ and $(52,35)$ and join them by a freeshand curve.

To obtain the value of the median, we locate the point $\frac{n}{2}=\frac{35}{2}=17.5$ on the y-axis. From this point, we draw a line parallel to the x-axis, meeting the ogive at the point P. From P, we draw a perpendicular PM on the x -axis. The x -coordinate of the point where this perpendicular meets the x -axis, i.e., M gives the value of the median.
$\therefore \quad$ The required value of the median is 46.5 kg .

Verification:

Weight (kg)	Number of students $\left(f_{i}\right)$	Cumulative frequency $(c f)$
$38-40$	3	3
$40-42$	2	5
$42-44$	4	9
$44-46$	5	14
$46-48$	14	28
$48-50$	4	32
$50-52$	3	35

Here, $n=35, \therefore \quad \frac{n}{2}=17.5$
Median class is 46-48

$$
\therefore \quad l=46, f=14, c f=14, h=2
$$

Median $={ }_{l+}\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$
$=46+\left(\frac{17.5-14}{14}\right) \times 2$
$=46+\frac{3.5}{14} \times 2$
$=46.5 \mathrm{~kg}$
The value of the median in both the cases is same, i.e., 46.5 kg .
Hence verified.
28. Draw a right triangle ABC in which $\angle \mathrm{ABC}=\theta$

Since, $\cot \theta=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{7}{8}$

$$
\begin{aligned}
& \therefore \quad \text { Let } \mathrm{AB}=7 \text { units and } \mathrm{AC}=8 \text { units } \\
& \begin{aligned}
& \therefore \quad \mathrm{BC}=\sqrt{\mathrm{AB}^{2}+\mathrm{AC}^{2}} \\
&=\sqrt{7^{2}+8^{2}}
\end{aligned} \\
& \text { (By Pythagoras Theorem) }
\end{aligned}
$$

$=\sqrt{49+64}$
$=\sqrt{113}$ units
$\therefore \quad \sin \theta=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{8}{\sqrt{113}} \quad$ and $\quad \cos \theta=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{7}{\sqrt{113}}$
Now, $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}=\frac{1-\sin ^{2} \theta}{1-\cos ^{2} \theta}$
$=\frac{1-\left(\frac{8}{\sqrt{113}}\right)^{2}}{1-\left(\frac{7}{\sqrt{113}}\right)^{2}}$
$=\frac{1-\frac{64}{113}}{1-\frac{49}{113}}$
$=\frac{113-64}{113-49}=\frac{49}{64}$
29. Given: In $\triangle A B C$ and $\triangle P Q R$; $A D$ and $P M$ are their medians respectively such that

$$
\begin{equation*}
\frac{A B}{P Q}=\frac{A D}{P M}=\frac{A C}{P R} \tag{i}
\end{equation*}
$$

To Prove: $\triangle A B C \sim \triangle P Q R$
Construction: Produce $A D$ to E such that $A D=D E$ and produce $P M$ to N such that $P M=M N$. Join $B E, C E$, QN, RN.

Proof: Quadrilateral ABEC and PGNR are $\|^{g m}$ because their diagonals bisects each other at D and M respectively.

$\Rightarrow B E=A C$ and $Q N=P R$
$\Rightarrow \frac{B E}{Q N}=\frac{A C}{P R} \Rightarrow \frac{B E}{Q N}=\frac{A B}{P Q}[\operatorname{From}(i)]$
i.e., $\frac{A B}{P Q}=\frac{B E}{Q N}$

From (i) $\frac{A B}{P Q}=\frac{A D}{P M}=\frac{2 A D}{A P M}=\frac{A E}{P N}$
$\Rightarrow \frac{A B}{P Q}=\frac{A E}{P N}$
From (ii) and (iii)
$\frac{A B}{P Q}=\frac{B E}{Q N}=\frac{A E}{P N}$
$\Rightarrow \triangle A B E \sim \triangle P Q N \quad$ (SSS similarity criterion)
$\Rightarrow \angle 1=\angle 2$
Similarly, we can prove
$\triangle A C E \sim \triangle P R N \Rightarrow \angle 3=\angle 4$
Adding (iv) and (v), we get
$\angle 1+\angle 3=\angle 2+\angle 4 \Rightarrow \angle A=\angle P$
And $\frac{A B}{P Q}=\frac{A C}{P R} \quad$ (Given)
$\therefore \triangle A B C \sim \triangle P Q R \quad$ (By SAS criterion of sinilarity)
30. If $a=c$, then
$a+\sqrt{b}=c+\sqrt{d} \quad \Rightarrow \quad \sqrt{b}=\sqrt{d} \quad \Rightarrow \quad b=d$
So, let $a \neq c$. Then, there exists a positive rational number x such that $a=c+x$.
Now, $a+\sqrt{b}=c+\sqrt{d}$

$$
\begin{array}{ll}
\Rightarrow & c+x+\sqrt{b}=c+\sqrt{d} \\
\Rightarrow & x+\sqrt{b}=\sqrt{d} \tag{i}\\
\Rightarrow & (x+\sqrt{b})^{2}=(\sqrt{d})^{2} \\
\Rightarrow & x^{2}+2 \sqrt{b} x+b=d \\
\Rightarrow & d-x^{2}-b=2 x \sqrt{b} \\
\Rightarrow & \sqrt{b}=\frac{d-x^{2}-b}{2 x} \\
\Rightarrow & \sqrt{b} \text { is rational. }
\end{array}
$$

$$
\left[\because d, x \text { and } b \text { are rationals, } . \therefore \frac{d-x^{2}-b}{2 x} \text { is rational }\right]
$$

From (i), we have

$$
\sqrt{d}=x+\sqrt{b}
$$

$\Rightarrow \quad \sqrt{d}$ is rational
$\Rightarrow \quad d$ is the square of a rational number.
Thus, either $a=c$ and $b=d$ or b and d are the squares of rationals.
31. (a) According to the given condition:
$y=50+25(x-1)$
$=50+25 x-25$
$\Rightarrow \quad y=25 x+25$
(b) Correct fare $=25 \times 10+25$
$=250+25$
= Rs 275
Amount paid back by the driver $=300-275=$ Rs 25
(c) The values depicted by the driver in the question are honesty and truthfulness.

