AMENDMENT NO. 1 DECEMBER 1989

TO

IS: 1570 (Part 2) - 1979 SCHEDULES FOR WROUGHT STEELS

PART 2 CARBON STEELS (UNALLOYED STEELS)

(First Revision)

(Cover page, Pages 1 and 3, title) — Substitute the following for the existing title:

'Indian Standard

SCHEDULES FOR WROUGHT STEELS

PART 2 CARBON STEELS (UNALLOYED STEELS)

Section 1 Wrought Products (Other Than Wires)
With Specified Chemical Composition and Related Properties'

(Cover page and all other pages, designation) — Substitute the following for the existing designation:

'IS: 1570 (Part 2/Sec 1)-1979 '

Indian Standard

SCHEDULES FOR WROUGHT STEELS

PART II CARBON STEELS (UNALLOYED STEELS)

(First Revision)

Alloy Steels and Special Steels Sectional Committee, SMDC 19

Chairman

DR G. MUKHERJEE

Representing

Steel Authority of India Ltd (Alloy Steels Plant), Durgapur

Members

SHRI A. N. BISWAS SHRI S. K. BASU (Alternate) SHRI B. C. BISWAS SHRI A. M. BISWAS (Alternate) SHRI P. K. CHAKRAVARTY

DR T. MUKHERJEE (Alternate) SHRI P. K. CHATTERJEE

SHRI P. K. GANGOPADHYAY (Alternate) SHRI K. M. CHAUDHURY

SHRI DASARATHA

SHRI B. C. BASAVARAJ (Alternate) SHRI S. V. DATAR SHRI M. K. GHOSH (Alternate) SHRI A. D. DIAS SHRI M. K. DATTA

SHRI R. C. JHA (Alternate) SHRI S. B. GUPTA

RDSO (Alternate)

SHRI P. K. GYNE (Alternate) JOINT DIRECTOR (MET), RESEARCH Ministry of Railways Designs AND STANDARDS ORGANIZATION DEPUTY DIRE TOR (MET-II),

Guest, Keen, Williams Ltd, Howrah

National Test House, Calcutta

The Tata Iron & Steel Co Ltd, Jamshedpur

Ministry of Defence (DGI)

National Metallurgical Laboratory (CSIR), Jamshedpur The Visvesvaraya Iron & Steel Ltd, Bhadravati

Ahmedabad Advance Mills Ltd, Navsari

The Indian Tool Manufacturers Ltd, Bombay Steel Authority of India Ltd (Alloy Steels Plant), Durgapur

Directorate General of Supplies & Disposals (Inspection Wing), New Delhi

(Continued on page 2)

© Copyright 1979

INDIAN STANDARDS INSTITUTION

This publication is protected under the Indian Copyright Act (XIV of 1957) and reproduction in whole or in part by any means except with written permission of the publisher shall be deemed to be an infringement of copyright under the said Act.

(Continued from page 1) Representing Members Indian Register of Shipping, Bombay SHRI S. R. KHARE SHRI V. N. PANDAY (Alternate) Bharat Forge Co Ltd, Mundhwa, Pune SHRI R. S. KOTHAWALE SHRI S. S. LAKKUNDI (Alternate) Ministry of Defence (R & D) DR D. P. LAHIRI Heavy Engineering Corporation Ltd, Ranchi SHRI I. N. BHATIA (Alternate) SHRIK. N. MEHRA Directorate General of Technical Development, SHRI D. K. DAS (Alternate) SHRI L. MISHRA New Delhi SHRI M. K. BANERJEE (Alternate) Ashok Leyland Ltd, Madras Shri A. Padmanabhan Firth India Steel Co Ltd. Thane SHRI I. M. PAT Mahindra Ugine Steel Co Ltd, Bombay; and Alloy SHRI B. M. PAI (Alternate) Steel Producers' Association of India, Bombay DR R. V. PATHY Mahindra Ugine Steel Co Ltd, Bombay SHRI R. NARAYANA (Alternate) Iron & Steel Control, Calcutta SHRI M. K. PRAMANIK Research & Development Centre for Iron and SHRI S. S. SAHA (Alternate) Dr V. Ramaswamy Steel (HSL), Ranchi SHRI S. R. MEDIRATTA (Alternate) Hindustan Machine Tools Ltd, Bangalore Shri M. Rangashai SHRI SANJIT SEN (Alternate I) SHRI P. RAMA PRASAD (Alternate II) The Tata Engineering and Locomotive Co Ltd, SHRI A. K. ROY Jamshedpur DR S. K. MONDAL (Alternate) Steel Furnace Association of India, Calcutta SHRI D. SRINIVASAN DR S. K. CHATTERJEE (Alternate) Ministry of Defence (DGOF) SHRI Y. C. SUBRAHMANYA M. N. Dastur & Co Pvt Ltd, Calcutta SHRI K. S. VAIDYANATHAN SHRI C. J. DAVE (Alternate) Director General, ISI (Ex-officio Member) SHRI C. R. RAMA RAO, Director (Struc & Met) Secretary Shri Vijay Kumar

Assistant Director (Metals), ISI

Subcommittee for the Revision of Schedule for Wrought Steel for General Engineering Purposes, SMDC 19:5

Convener

SHRIP. K. CHAKRAVARTY

Members

SHRI S. K. BASU SHRI P. K. CHATTERJEE

SHRI M. K. SEN (Allernate)

The Tata Iron & Steel Co Ltd, Jamshedpur

Guest, Keen, Williams Ltd, Howrah Ministry of Defence (DGI)

(Continued on page 18)

Indian Standard

SCHEDULES FOR WROUGHT STEELS

PART II CARBON STEELS (UNALLOYED STEELS)

(First Revision)

O. FOREWORD

- 0.1 This Indian Standard (Part II) (First Revision) was adopted by the Indian Standards Institution on 5 March 1979, after the draft finalized by the Alloy Steels and Special Steels Sectional Committee had been approved by the Structural and Metals Division Council.
- 0.2 Schedules for wrought steels for general engineering purposes (IS: 1570-1961) was first published in 1961. On the basis of the experience gained in the production and use of steels, the Sectional Committee has decided to revise the standard and issue it in parts. The other parts of the standard are as follows:
 - Part I Steels specified by tensile and/or yield properties
 Part III Carbon and carbon manganese free cutting steels
 Part IV Alloy steels (excluding stainless and heat-resisting steels)
 Part V Stainless and heat-resisting steels*

Part V Stainless and neat-resisting stee

Part VI Tool steels

- 0.3 The following major modifications have been made in this revision:
 - a) Steel designations have been modified in accordance with IS: 1762 (Part I)-1974†. However, for the sake of easy identification old designations are also given within brackets.
 - b) New grades 2C2, 50C8, 60C6 have been added.
 - c) Manganese content of grades C05 (5C4), C55 (55C4), and C60 (60C4) have been modified.
 - d) Mechanical properties for cold-drawn bars given in Table 3 have been modified on the basis of experience gained.

^{*}Already published as IS: 1570 (Part V)-1972.

[†]Code for designation of steels: Part I Based on letter symbols.

- 0.4 This schedule does not give limits for sulphur and phosphorus. These have to be specified in the detailed specifications. The standard ranges for sulphur and phosphorus and the method for designating steel according to its sulphur and phosphorus content, steel making practice and method of deoxidation is detailed in Appendix 'A' for information.
- 0.5 For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS: 2-1960*. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

1. SCOPE

- 1.1 This schedule (Part II) is applicable to standards for carbon steels when it is necessary for the steel to be supplied to a composition within reasonably defined limits. This schedule is not intended to be used as a standard.
- 1.1.1 This schedule may be used for ordering steels provided no detailed specification is available for the particular steel.

2. GENERAL

- 2.1 While preparing Indian Standards, or revising existing standards, steels listed in this schedule shall be selected. The specification of mechanical properties different from those given in this schedule should not be made unless special conditions of service render this essential. In that event, full reasons for the proposed departure from the steels specified in this schedule shall be submitted to the Alloy Steels and Special Steels Sectional Committee, SMDC 19, and its approval obtained.
- 2.2 In addition to specified mechanical properties, ranges for carbon and manganese are, laid down in the schedule (see Table 1), but as in many cases, the steels of lower carbon content are required as rimming, semi-killed or killed steel depending on the subsequent manipulation and conditions of service, the silicon content has not been specified. Where necessary, the silicon content or the type of steel, for example, killed, semi-killed, etc, should be included in the standard. Since different levels of sulphur and phosphorus are required according to the severity of the conditions in service, limits for these elements are also not included in the schedule but should be specified in a specification at levels appropriate to the method of steel production, conditions of service, etc.

[•]Rules for rounding off numerical values (revised).

TABLE 1 SPECIFIED CARBON AND MANGANESE LIMITS FOR THE STANDARD STEELS

	rok	(Clause 2.2		
STEEL DE	esignation Part I)-1974]	C PERCENT	Mn Percent	Reference to Relevant Indian Standard
New	Old			
(1)	(2)	(3)	(4)	(5)
2C2	(-)	0.05 Max	0·40 Max	-
4C2	(C04)	0.08 Max	0·40 Max	_
5C4	(C05)	0·10 Max	0·50 Max	IS:4882,4397
7C4	(C07)	0·12 Max	0.50 Max	_
10C4	(C10)	0.15 Max	0.30-0.60	IS: 1812, 2879, 4432
14C6	(C14)	0.10-0.18	0.40-0.70	IS:1875, 2004, 4432, 5489
15C4	(C15)	0.20 Max	0.30-0.60	IS: 1812
15C8	(Cl5Mn7 <u>5</u>)	0.10-0.20	0.60-0.90	IS: 2100, 6967, 1875, 2004, 4432
20C8	(C20)	0.15-0.25	0.60-0.90	IS: 1875, 2004
25C4	(C25)	0.20-0.30	0.30-0.60	
25C8	(C25Mn75)	0.20-0.30	0.60-0.90	IS:1875, 2004, 3930, 5517, 6967
30C8	(C30)	0.25-0.35	0.60-0.90	IS: 1875, 2004, 3930, 5517, 6967
35C4	(C35)	0.30-0.40	0.30-0.60	
35C8	(C35Mn75)	0.30-0.40	0.60-0.80	IS: 1875, 2004, 3930, 5517
40C8	(C40)	0.35-0.45	0.60-0.90	IS:5517,7226,7283
45C8	(C45)	0.40-0.50	0.60-0.80	IS: 1875, 2004, 2507, 3930, 3261, 5517
50C4	(C50)	0.45-0.55	0.30-0.60	
50C8	(-)	0.45-0.55	0.60-0.90	IS:5517
50C12	(C50Mn1)	0.45-0.55	1-10-1-40	
55C4	(C55)	0.50-0.60	0-30-0-60	1S:2507, 3885, 3930 7226, 8054, 8055
55C8	(C55Mn7 <u>5</u>)	0.50-0.60	0.60-0.50	IS: 1875, 3445, 5517, 74 94
60C4	(C60)	0.55-0.65	0.30-0.60	
60C6	(-)	0.55-0.65	0.50-0.80	_
65C6	(C65)	0.60-0.70	0.50-0.80	IS: 1875, 2004, 2507 4072
70C6	(C70)	0.65-0.75	0.50-0.80	IS: 2507, 4072, 7226
75C6	(C75)	0.70-0.80	0.50-0.80	IS: 2507, 3885
80C6	(C80)	0.75-0.85	0.50-0.80	IS: 2507, 4072
85C6	(€85)	0.80-0.80	0.50-0.80	IS: 2507, 7226
98C6	(C98)	0.90-1.05	0.50-0.80	1S: 2507, 3195, 7226
113C6	(C113)	1-05-1-20	0.50-0.80	IS:3195

- 2.3 This schedule includes specified tensile properties applicable to the different conditions, for example, Table 2 gives values for the hot-rolled or normalized conditions. These values are based on ruling sections up to 150 mm and for larger sizes some adjustment of the specified tensile range for a particular range of composition, or conversely, of the specified composition for a particular range of tensile strength, may be necessary. Mechanical properties for cold-drawn bars and for hardened and tempered bars and forgings, together with the sizes to which these properties are applicable are given in Tables 3 and 4. Table 5 gives the properties for case-hardening steels, that is, the properties obtainable in the core of casehardened parts after refining and quenching. Some of the steels are used in the form of sheet and strip and tubes and the tensile properties of these are given in Tables 6, 7 and 8. For some purposes, a minimum yield stress is regarded as specification requirement and minimum yield stress values are, therefore, given for some of the physical conditions for inclusion in specifications, if required. Information on the assessment of the ruling section of bars, forgings and parts is given in Tables 9 and 10.
- 2.4 In addition, values for the specified minimum percentage elongation corresponding to the specified tensile ranges are included. Different types of test pieces are used for the tensile test depending on the form of the material; for example, flat test pieces for thin plates, sections and flat bars; unmachined round test pieces for small size round bars; and machined round test pieces for thicker plates, for larger size round bars and for square bars, and forgings. Since the percentage elongation depends on the relation between the gauge length and the cross-sectional area of the test piece, specified minimum values for the percentage elongation for the different types of test pieces are included in the schedule. These elongation values given are based on a gauge length of $5.65\sqrt{A}$ which is now internationally accepted. If test pieces of other than $5.65\sqrt{A}$ gauge length are used, elongation conversion may be obtained from IS: 3803-1974*.
- 2.5 For tensile tests on tubes, the specified percentage elongation should be based on the recently adopted formulae of either 950 divided by the actual tensile strength in kgf/mm² when using a gauge length equivalent to $5.65\sqrt{A}$ or of 1 100 divided by the actual tensile strength in kgf/mm² when using a gauge length equivalent to $4\sqrt{A}$.
- 2.6 The notch toughness of steels after hardening and tempering is sometimes assessed by an impact test and values for incorporation in specifications; if required, are given in the relevant tables of the schedule.

^{*}Method for clongation conversions for steel (first revision).

TABLE 2 SPECIFIED TENSILE LIMITS FOR PLATES, SECTIONS, BARS, BILLETS AND FORGINGS IN THE HOT-ROLLED OR NORMALIZED CONDITION

(Clause 2.3)

Designation		TENSILE	ELONGATION PERCENT, Min
New	Old	STRENGTH	
(1)	(2)	(3)	(4)
		MPa*	
7C4	(C07)	320-400	27
10C4	(C10)	340-420	26
14C6	(C14)	370-450	26
15C4	(C15)	370-490	25
15C8	(Cl5Mn75)	420-500	25
20C8	(C20)	440-520	24
25C4	(C25)	440-540	23
25C8	(C25Mn75)	470-570	22
30C8	(C30)	500-600	21
35C4	(C35)	520-620	20
35C8	(C35Mn75)	550-650	20
40C8	(C40)	580-680	18
45C8	(C45)	630-710	15
50C4	(C50)	660-780	13
50C13	(C50Mn1)	720 Min	11
55C8	(C55Mn75)	720 Min	13
60C4	(C60)	750 Min	11
65C6	(C65)	750 Min	10

Note — Minimum values for the yield stress may be required in certain specifications and in such cases a minimum yield stress of 55 percent of the minimum tensile strength should be satisfactory.

 $¹MPa = 1N/mm^2 = 0.1020 \text{ kgf/mm}^2$.

^{2.7} The specified mechanical properties are applicable to test samples taken from a standard location which should be included in the specification.

^{2.8} Any tests, for example, bend test, flattening tests on tube, etc, additional to the tests given in this schedule should also be specified in the standard as appropriate.

IS

	Over 63 mm		Elongation Percent, Min	(10)	18	18	18	15	12	10	10
	Ove		Strength Min	(9) MPa•	360	430	430	1 00	540	290	630
RAWN BARS	Оуев 40 mm	Ur ro 63 mm	Elongation Percent, Min	(8)	15	15	15	12	10	6	6
a cold-d		ົວ	Tensile Strength	(7) MPa*	410	470	470	530	570	610	029
TABLE 3 SPECIFIED TENSILE LIMITS FOR COLD-DRAWN BARS	OVER 20 mm	Ur ro 40 mm	Elongation Percent, Min	(9)	13	13	12	10	6	æ	80
ED TENSII	r _v O	'n	Tensile Strength	(5) MPa*	450	510	510	570	019	630	069
E 3 SPECIFII	Ur 10 20 mm	Florestion	Percent, Min	· (4)	11	Ξ	10	6	ဆ	7	7
TABI	Uric	Tensile	Strength Min	(3) MPa*	490	540	540	610	640	0/9	730
	Designation	PIO		(2)	(C10)	(Cl5Mn75)	(C20)	(C30)	(C40)	(C40)	(C55Mn75)

8

 $1MPa = IN/mm^2 = 0.102.0 \text{ kgf/mm}$

TABLE 4 SPECIFIED MECHANICAL PROPERTIES FOR BARS AND FORGINGS IN THE HARDENED AND TEMPERED CONDITION

(Clause 2.3)

Des	SIGNATION	TENSILE YIELD STRENGTH STRESS		ELONGATION, PERCENT,	Izon Impact	LIMITING RULING
New	Old		Min . SPECIFIND)	Min	VALUE, Min SPECIFIE	Section
(1)	(2)	(3) MPa*	(4) MPa •	(5)	(6) Joules	(7) mm
30C8	(C30)	600-750	400	18	55	30
35C 3	(C35Mn75)	600-750	400	18	55	63
40C8	(C40)	{600-750 {700-850	380 480	18 17	41 35	100 30
45C8	(C45)	$\begin{cases} 600-750 \\ 700-850 \end{cases}$	380 480	17 15	41 35	100 30
50C4	(C50)	{700-850 {800-950	460 5 4 0	15 13		63 30
55C8	(C55Mn <u>75</u>)	{700-850 800-950	460 540	15 13		63 30
*1MF	$P_2 = IN/mm^2 =$	0·102 0 kgf/m	ım³.			

TABLE 5 SPECIFIED MECHANICAL PROPERTIES FOR CASE-HARDENING STEELS IN THE REFINED AND QUENCHED CONDITION (GORE PROPERTIES)

(Clause 2.3)

DESIGNATION		Tensile Strength,	ELONGATION, PERCENT, Min	IZOD IMPACT Value, Min	LIMITING RULING	
New	Old	Min		(IF SPECIFIED)	SECTION	
(1)	(2)	(3) MPa*	(4)	(5) Joules	(6) mm	
10C4	(C10)	500	17	55	15	
14C6	(C14)	500	17	55	Over 15 Up to 30	
15C8	(Cl5Mn75)	500	17	5 5	30	
20C8	(C20)	500	16	55	30	

 $¹MPa = 1N/mm^2 = 0.1020 \text{ kgf/mm}^2$.

TABLE 6 SPECIFIED TENSILE LIMITS FOR MILD STEEL SHEET AND STRIP IN THE COLD-ROLLED AND ANNEALED CONDITION

(Clause 2.3)

Desig	ENATION	TENSILE	ELONGATION, PERCENT,
New	Old	STRENGTH <i>Min</i>	Min, TEST PIECE, WIDTH 12·5 mm, GAUGE LENGTH 50 mm
(1)	(2)	(3) MPa•	(4)
7C4	(C07)	300-380	28
10C4	(C10)	320-400	28
15C4	(C15)	320-440	25
20C8	(C20)	390-510	25

 $¹MPa = IN/mm^2 = 0.102.0 \text{ kgf/mm}^2$.

TABLE 7 SPECIFIED TENSILE LIMITS FOR MILD STEEL SHEET AND STRIP IN THE COLD-ROLLED CONDITION

(Clause 2.3)

DESIGNATION		Condition	TENSILE	
New	Old		STRENGTH	
(1)	(2)	(3)	(4) MPa*	
15C4	(CI5)	{ Quarter hard { Half hard { Hard	390-470 470-570 570 <i>Min</i>	
*1MPa =	$1N/mm^2 = 0.102$	2 0 kgf/mm²,		

TABLE 8 SPECIFIED TENSILE LIMITS FOR TUBES IN THE COLD-DRAWN AND ANNEALED CONDITION AND IN THE COLD-DRAWN OR COLD-DRAWN AND TEMPERED CONDITION

(Clause 2.3)

Des	IGNATION	COLD-DRAWN		COLD-DR		ELONGATION		
New	Old			Cold-Drawn and Tempered		PERCENT, Min		
		Tensile Strength, Min	Yield Stress, Min	Tensile Strength, Min	Yield Stress, Min			
(1)	(2)	(3) MPa *	(4) MPa*	(5) MPa*	(6) MPa*	(7)		
14C6 15C4 15C8	(C14)) (C15) } (C15Mn75)	320	170	440	38	950 on gauge length		
20C8 25C4	(C20) (C25)	370	220	520	42	TS on gauge length = $5.65\sqrt{A}$		
25C8	(C25Mn75)	390	250	560	46	or		
35C4 35C8	(C35) (C35Mn75)	440	280	580	47	$\left\{ \begin{array}{l} \frac{1\ 100}{\text{TS}} \end{array} \right.$ on gauge length		
45C8 50C12	$\left(\begin{array}{c} (C45) \\ (C50Mn1) \end{array}\right)$	520	340	700	60	$=4\sqrt{\Lambda}$		
*17	$IPa = 1N/mm^2$	= 0·102 0 k	gf/mm²		,			

TABLE 9 CONVERSION OF RECTANGULAR AND SQUARE SECTIONS INTO EQUIVALENT RULING SECTIONS, OIL QUENCHING

(Clause 2.3) WIDTH OF THICKNESS OF SECTION SECTION mm mm mm mm mm mm mmmmmm DIAMETER OF EQUIVALENT ROUNDS (1) (2)(3) (5)(6)(7)(8)(9)(4)(10)(11)nım $_{\mathrm{mm}}$ mm mm mmmm mm mm $\mathbf{m}\mathbf{m}$ mmmm × × × $9\overline{2}$ × Х × × Х 350 and over X X Greater than 160 mm.

× Greater than 160 mm.

TABLE 10 CONVERSION OF RECTANGULAR AND SQUARE SECTIONS INTO EQUIVALENT RULING SECTIONS, AIR COOLING

(Clause 2.3)

Width of				T	ніски	ESS OF S	ECTION			
SECTION	10	20	30	40	50	60	80	100	120	140
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
			Dr.	AMETE	в ог Е	QUIVAL	ent Rot	INDS		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
10	10		_	_		_	_	_		-
20	13	20	-				_		_	_
30	15	24	30	_			_	_	_	
40	16	27	34	40	_		_	_		_
50	16	29	38	45	51		-	_		_
60	17	30	41	49	55	61	_			
80	17	32	45	54	62	70	18		-	
100	17	33	47	58	68	76	90	102		_
120	17	34	49	62	72	82	98	111	122	
140	17	34	50	64	76	86	104	119	132	142
160	17	34	51	66	79	90	109	126	140	152
180	18	35	51	67	81	93	114	132	148	×
200	18	35	5 2	68	83	95	117	137	154	×
225	18	35	52	69	85	98	121	142	×	×
250	18	36	53	70	86	100	125	147	×	×
300	18	37	54	71	88	104	131	155	×	×
350 and over	20	39	59	78	97	115	152	×	×	×

APPENDIX A

(Clause 0.4)

NEW SYSTEM OF DESIGNATION OF STEELS

A-1. GENERAL

A-1.1 The new system of designation of steel is based on the draft ISO proposal submitted by India to ISO/TC 17 'Steel' for formulation of an international standard. Details of the new designation system are given in IS: 1762 (Part I)-1974*.

A-2. STEELS DESIGNATED ON THE BASIS OF CHEMICAL COMPOSITION

- A-2.1 Unalloyed Steels (as Defined in IS: 7598-1974†) The code designation shall consist of the following in the order given:
 - a) Figure indicating 100 times the average percentage of carbon content,
 - b) Letter 'C', and
 - c) Figure indicating 10 times the average percentage of manganese content. The figure after multiplying shall be rounded off to the nearest integer according to the rules given in IS: 2-1960‡.
 - d) If necessary, symbols indicating special characteristics as follows:
 - 1) Method of designation Depending on whether the steel is killed, semi-killed or rimming variety, the following symbols shall be used to indicate the steel making practice:
 - i) R = rimming steel, and
 - ii) K =killed steel.

Note - If no symbol is used, it shall mean that the steel is of semi-killed type.

- 2) Steel quality The following symbols shall be used to indicate steel quality:
 - Q1 = non-ageing quality,
 - O2 = freedom from flakes,
 - Q3 = grain size controlled,
 - Q4 = inclusion controlled, and
 - Q5 = internal homogeneity guaranteed.

^{*}Code for designation of steels: Part I Based on letter symbols.

Classification of steels.

IRules for rounding off numerical values (revised).

3) Degree of purity — The sulphur and phosphorus levels (ladle analysis) shall be expressed as follows:

Symbol	Maximum Content in Percent			
	Phosphorus	Sulphur		
P25	0.025	0.025		
P35	0.035	0.035		
P50	0.050	0.050		
P70	0.070	0.070		
No symbol will mean	0.055	0.055		

The above symbols use the letter 'P' followed by 1000 times the maximum percentage of sulphur and phosphorus. In case the maximum contents of sulphur and phosphorus are not same, the following procedure shall be followed:

Symbol SP shall be used to indicate the levels followed by:

- a) 100 times the maximum sulphur rounded off* to the nearest integer.
- b) 100 times the maximum phosphorus rounded off* to the nearest integer.

Example:

Maximum sulphur = 0.045 percent

Maximum phosphorus = 0.035 percent

Designation: SP 44.

4) Weldability guarantee — Guaranteed weldability of steel as determined by tests mutually agreed between the supplier and the manufacturer shall be indicated by the following symbols:

W = fusion weldable, and

W₁ = weldable by resistance welding but not fusion weldable.

5) Resistance to brittle fracture — Symbol 'B', 'B0', 'B2' or 'B4' indicating resistance to brittle fracture based on the results of the V-notch Charpy impact test.

For steels B, B0, B2 and B4 a test should be made with Charpy V-notch specimens, taken in the direction of rolling with the notch perpendicular to the surface of the plate or product.

^{*}Rounding off shall be done according to the rules given in IS: 2-1960 Rules for rounding off numerical values (revised).

Steels B, B0, B2 and B4 are characterized by an average V-notch Charpy impact value according to the following table:

Steels		Specified U	TS Range	
	370 to 52	0 MPa*	500 to 7	00 MPa*
	Energy	Tempe- rature	Energy	Tempe- rature
(1)	(2)	(3)	(4)	(5)
(-/	J	$^{\circ}\mathrm{C}$	J	${}^{\circ}\mathrm{C}$
В	28	27	40	27
В0	28	0	28 40	$-10 \\ 0$
B2	28	-20	28 40	-30 -20
B4	28	-40	28 40	50 40

6) Surface condition — The following symbols shall be used to indicate surface condition:

S1 = deseemed or scarfed;

S2 = descaled;

S3 = pickled (including washing and neutralizing);

S4 = shot, grit or sand blasted;

S5 = peeled (skinned);

S6 = bright drawn or cold rolled; and

S7 = ground.

Note — If no symbol is used, it shall mean that the surface is in as-rolled or as-forged condition.

7) Formability (applicable to sheet only) — The following symbols shall be used to indicate drawability:

D1 = drawing quality,

D2 = deep drawing quality, and

D3 = extra deep drawing quality.

Note — If no symbol is used, it shall mean that the steel is of commercial quality.

 $^{1 \}text{MPa} = 1 \text{N/mm} = 0.102.0 \text{ kgf/mm}.$

8) Surface finish (applicable to sheet only) — The following symbols shall be used to indicate the surface finish:

F1 = general purpose finish,

F2 = full finish,

F3 = exposed,

F4 = unexposed,

F5 = matt finish,

F6 = bright finish,

F7 = plating finish,

F8 = unpolished finish,

F9 = polished finish,

F10 = polished and coloured blue,

F11 = polished and coloured yellow,

F12 = mirror finish,

F13 = vitreous enamel finish, and

F14 = direct annealed finish.

9) Treatment — The following symbols shall be used to indicate the treatment given to the steel:

T1 = shot-peened,

T2 = hard-drawn,

T3 = normalized*,

T4 = controlled rolled,

T5 = annealed,

T6 = patented,

T7 = solution-treated,

T8 = solution-treated and aged,

T9 = controlled cooled,

T10 = bright annealed,

T11 = spherodized,

T12 = stress-relieved,

T13 = case-hardened*, and

T14 = hardened and tempered.

Note - If no symbol is used, it means that the steel is hot-rolled.

^{*}Includes tempering, if done.

- 10) Elevated temperature properties For guarantee with regard to elevated temperature properties, the letter 'H' shall be used. However, in the designation only the room temperature properties shall be shown. Elevated temperature properties shall be intimated to the purchaser separately by the manufacturer.
- 11) Cryogenic quality—For guarantee with regard to low temperature properties, the letter 'L' shall be used. However, only the room temperature properties shall be indicated in the designation.

Examples:

- 24C5B0 Semi-killed steel with average 0.25 percent carbon and 0.5 percent manganese content and resistance to brittle fracture grade B0.
- 45C10W Steel with average 0.45 percent carbon, 1 percent manganese and guaranteed fusion weldable.

(Continued from page 2)

Members

Suri M. K. Dutta

Representing

Steel Authority of India Ltd (Durgapur Steel Plant), Durgapur

SHRI R. C. JHA (Alternate)

JOINT DIRECTOR (MET), Ministry of Railways RESEARCH DESIGNS &

STANDARDS ORGANIZATION

Assistant Director (MS) (Alternate) DR N. KONDAL RAO

Bhabha Atomic Research Centre, Trombay

SHRIK. BALARAMAMOORTHY (Alternate)

DR N. MOHAN

DR R. V. PATHY*

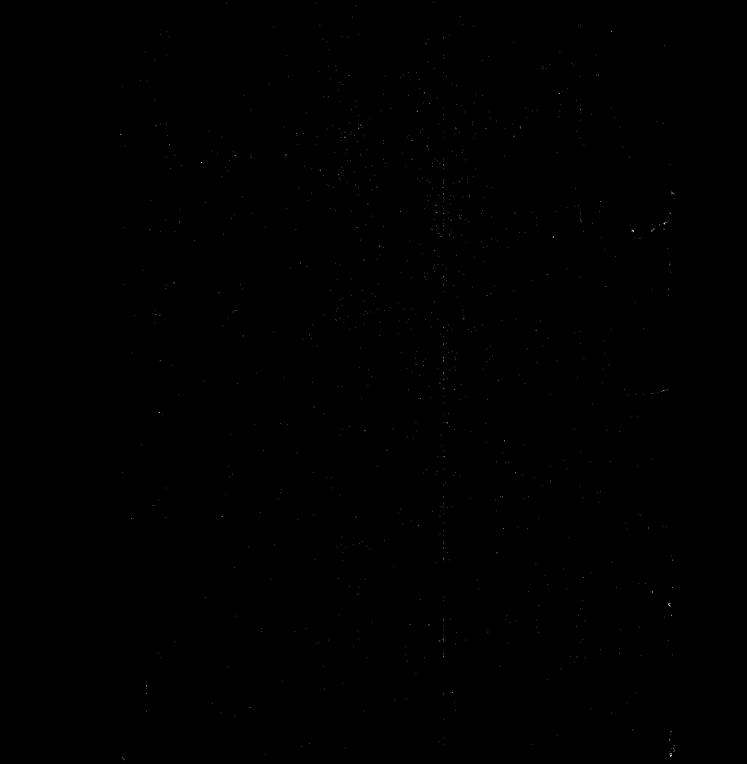
Shri A. K. Roy

SHRI M. K. PRAMANIK Shri R. C. Prasad SHRI D. K. DAS (Alternate)

SHRI A. R. V. SUBRAMANIAN Dr G. VENEATARAMAN

Bihar Alloy Steels Ltd, Ranchi

Alloy Steels Producers Association of India, Bombay


Iron & Steel Control, Calcutta

Heavy Engineering Corporation Ltd, Ranchi

Association of Indian Automobile Manufacturers, Bombay

Mahindra Ugine Steel Co Ltd, Khopoli Bharat Heavy Electricals Ltd, Tiruchchirappalli

^{*}Dr R. V. Pathy is also alternate to Shri A. R. V. Subramanian representing Mahindra Ugine Steel Co Ltd. Khopoli.

