BOLTS, SCREWS, STUDS AND NUTS Specifications

GOST 1759.0-87 (CT CЭВ 4203 -83)

> Translated by RUSSTRANS Submitted on: 15.03.04 Serial No: 39

Change № 1 GOST 1759.0—87 Bolts, screws, studs and nuts. Specifications. Approved and introduced into effect by the decree № 3376 dated 15.11.89 of the state committee of standardization and quality of products of USSR

Date of Introduction 01.07.90

Point 1.2 Add paragraph: «The basic deviations of the threads should be assigned as per GOST 16093—81 depending upon the required coating thickness. Tolerance fields of threads are specified for products without coating. After the application of coating, the requirement for threads is according to GOST 16093—81.

Point 2.4.1.1. The first paragraph. Replace words; «or conventional designation of material group» with «(or material groups)»; after word «sealed» add word «(trade mark)»;

The third paragraph, add strength class: 6.6 (after 5.6);

Last paragraph. Replace strength class: 06 with 05.

Point 2.4.1.4, add paragraph: «while using the low carbon martensite steel for products of strength class 10.9, the designation of strength class should be underlined: 10.9 or 109».

Point 3.2, add the note — 2; «2. Till 01.01.92 obligatory tests was:

As per GOST 1759.4—87 for strength classes 8.8—12.9 determinations of ultimate strength and determination of impact strength; for strength classes 4.8; 5.8; 6.8 test for strength of joints of the head with rod;

As per GOST 1759.5—87 for strength classes 8—12, proof load stress test.

Other tests are carried out as per the customer's request.

Point 4.8. Replace the reference: GOST 9.302—79 with GOST 9.302—88.

Point 4.13. Replace words: «and length < 3d» with «or length <3d».

The appendix 1. The second example of conventional designation. Replace designation: Π with LH.

(ИУС № 2 1990)

УДК 621.SS2: 006.354

Group Γ31

STATE STANDARD OF USSR

Bolts, screws, studs and nuts.

Specifications

GOST 1759.0-87

(CT C3B 4203 -83)

ОКП 12 8200, 12 8300, 12 8400

Date of Introduction 01.01.89

This standard covers the bolts, screws, studs and nuts with metric thread as per GOST 24705-81 of diameter from 1 to 48 mm.

1. MAIN PARAMTERS AND DIMENSIONS

- 1.1. Design, dimensions and surface finish of bolts, screws, studs and nuts are established in standards on products.
- 1.2. Tolerances of the dimensions, shapes and surface position of bolts, screws, studs and nuts as per GOST 1759.1—82.
- 1.3. As per the customer's request, it is allowed to manufacture bolts, screws and studs with increased or decreased length of threaded section (part).
- 1.4. As per the agreement between the manufacturer and the customer, following is allowed to manufacture:

Bolts, studs and nuts with left hand thread;

Bolts with one locking hole in the head.

1.5. Permissible deviations of the shapes, from established in standards on design of bolts, screws, studs and nuts of all accuracy classes, should correspond to the specifications given in the appendix 5 (obligatory).

2. TECHNICAL REQUIREMENTS

2.1. Appearance

- 2.1.1. The surface of bolts, screws, studs and nuts should not have traces of corrosion and mechanical damages.
- 2.1.2. Permissible surface defects of bolts, screws and studs as per GOST 1759.2—82.
 - 2.1.3. Permissible surface defects of nuts as per GOST 1759.3—83.

2.2. Mechanical properties and materials

- 2.2.1. Mechanical properties of bolts, screws (except adjusting screw) and studs made from carbon non-alloyed and alloyed steels —as per GOST 1759.4—87.
- 2.2.2. Mechanical properties of adjusting screws and the similar fastening products, which are not under tension, made from carbon non-alloyed and alloyed steels as per GOST 25556—82.
- 2.2.3. Mechanical properties of nuts from carbon non-alloyed and alloyed steels— as per GOST 1759.5—87.
- 2.2.4. Mechanical properties of bolts, screws, studs and nuts, made from corrosion-proof, high-temperature, heat-resistant and thermo stable steels, and also made from recommended steel grades as per tables 1 and 2.
- 2.2.5. Mechanical properties of bolts, screws, studs and nuts, made from non-ferrous alloys, and also made from recommended grades of alloys as per tables 3 and 4
- 2.2.6. It is permitted to manufacture bolts, screws, studs and nuts from materials and the alloys, which are not specified in table 1- 4. During this their mechanical properties should not be below the specified values for the respective groups.
- 2.2.7. As per the customer's request fastening products made from brass, manufactured by cold upsetting, should be heat-treated for removal of internal stress.

2.3. Coatings

2.3.1. Bolts, screws, studs and nuts should be manufactured with one of the coating types given in table 5 or without coatings.

It is permitted to use other types of coatings — as per GOST 9.303—84.

- 2.3.2. Thickness of coatings as per GOST 9.303—84.
- 2.3.3. Technical requirements for coatings as per GOST 9.301—86.

Table 1
Mechanical properties of bolts, screws and/studs, made from corrosion-proof, hightemperature, heat-resistant and thermo stable steels at standard temperature

Conventional	Ultimate	Yield	Relative	Impact	Proof load	Stee	1
designation of group	strength σ_B , N/mm ²	$\lim_{\sigma_{1}} (\sigma_{0,2}),$ N/mm^{2}	elongation δ_5 , in %	strength KCU, J/cm ²	stress, σ_{Π} , N/mm ²	Grade	Designation of standard
1-4			Not les	s than			
21	510	195	35	Not standardized	175	12X18H10T 12X18H9T 10X17H13M2T 10X17H13M3T 06XH28MДТ	
22	590	345	20	60	310	12X13 08X2H6M2T	GOST 5632—72
23	690	540	12	60	485	20X13 14X17H2	
24		540	8	30	485	10X11H23T3MP	
	000					13Х11Н2В2МФ	
25	880	735	10	30	660	25X1MΦ; 25X2M1Φ 20X1M1Φ1TP	GOST 20072—74
26	1080	835	10	50	750	07X16H6	GOST 5632—72

Mechanical properties of nuts made from corrosion-proof, high-temperature, heat-resistant and thermo stable steels at standard temperature

Conventional	Proof load stress, σ_F ,	S	Steel	
designation of group	N/mm ² , not less than	Grade	Designation of standard	
21	510	12X18H10T, I2X18H9T 10X17H13M2T 10XI7H13M3T 06XH28MДТ		
22	590	12X13 08X21H6M2T	GOST 5632—72	
23	690	20X13, 14X17H2		
24	880	10X11H23T3MP 13X11H2B2MФ		
25	660	25X1MΦ, 25X2M1Φ 20X1M1Φ1TP	GOST 20072—74	
26	1080	07X16H6	GOST 5632—72	

Table 3
Mechanical properties of bolts, screws and studs made from nonferrous alloys at standard temperature

Conventi onal designati on of	Ultimate strength σ_B , N/mm ²	Yield $\lim_{T} \sigma_{T}$ $(\sigma_{0,2})$, N/mm^{2}	Relative elongatio n δ_5 , in $\%$	Brinnel's hardness HB	Grade of material or alloy	Designation of standard	
group		Mini	mum				
31	260	120	15	Not standar dized	АМг5П АМг5	GOST 4784-74	
32					Brass Л63, Brass ЛС59- 1	GOST	
33	310	Not standard ized	12	75	Brass ЛС59-1, Antimagnetic Brass Л63 Antimagnetic	15527-70 GOST 12920-67	
34	4 490			Not	Bronze Бр.АМц9-2	GOST 18175-78	
35	370	195	10	- standar dized	Д1, Д1П, Д16, Д16П	GOST 4784-74	

Table 4
Mechanical properties of nuts made from non-ferrous alloys at standard temperature

Conventional designation of group	Proof load stress, σ_F , N/mm ² Minimum	Grade of material or alloy	Designation of standard
31	260	АМг5П, АМг5	GOST 4784-74

Continuation of table 4

Conventional designation of group	Proof load stress, σ_F , N/mm^2 Minimum	Grade of material or alloy	Designation of standard
32		Brass ЛС59-1, Л63	GOST 15527—70,
33	310	Brass Л63 antimagnetic Brass ЛС59-1 antimagnetic	GOST 12920—67
34	490	Вгопле Бр.АМц 9-2	GOST 18175—78
35	370	Д1, Д1П, Д16, Д16П	GOST 4784—74

Table 5

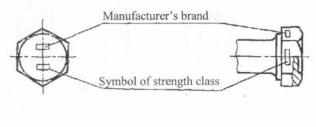
	Designation of coat	ing
Coating type	As per GOST 9.306-85	Code
Zinc plating, Chromate treatment/zinc- yellow plating	Ц.хр	01
Cadmium plating, Chromate treatment/zinc-yellow plating	Кд. Хр	02
Multi-layer coating: copper — nickel	M. H	03
Multi-layer coating: copper — nickel — chromium	М. Н. Х. б	04
Chemical Oxidizing, oil finish	Хим. Окс. прм	05
Chemical phosphotazing, oil finish	Хим. Фос. прм	06
Tin plating	O	07
Copper plating	M	08
Zinc plating	Ц	09
Oxidation, chromatizing	ан. Окс. нхр	10
Oxidation, from acid solutions	Хим. Пас	11
Silver coating	Ср	12
Nickel plating	Н	13

2.4. Marking

2.4.1. General rules of marking

2.4.1.1. Bolts with hexagonal head, screws with the cylindrical head and hexagonal hole for key basis, hexagonal studs and nuts should be marked with strength class or with conventional designation of material groups and seal of the manufacturer,

and products with the left hand thread should be marked in addition with symbols of left hand thread.


Compulsory marking should be done:

Bolts with hexagonal head of strength classes 4.6, 5.6, 8.8, 9.8, 10.9, 12.9;

Screws with cylindrical head and hexagonal hole for key and study of strength classes of 8.8, 9.8, 10.9, 12.9;

Nuts of strength classes 06, 8, 9, 10, 12.

- 2.4.1.2. Products not specified in point 2.4.1.1 and of un-specified strength classes, as well as the products manufactured by machining, should be marked as per the agreement between the manufacturer and the customer.
 - 2.4.1.3. Marking should be either by embossing or by indentation.
- 2.4.1.4. While marking the strength classes, the point dividing the first and second symbol of strength class, may not be marked.
 - 2.4.1.5. The manufacturer establishes the letter sizes of the symbols.
- 2.4.2. Marking of bolts with hexagonal head and screws with cylindrical head and hexagonal hole for key.
- 2.4.2.1. Bolts and screws with diameter of thread d≥6 mm are subject to marking.
- 2.4.2.2. Marking should be carried out on face or lateral surface of the head of bolt or screw (fig. 1). Marking on lateral surface of the head should be by indentation.

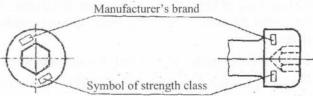
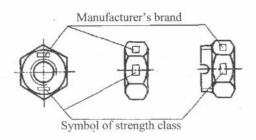



Figure 1

- 2.4.2.3. During marking by embossed symbols, the increase of the maximum limiting height of the head of bolt or the screw is permitted, in following limits:
 - 0.1 mm for products with diameter of thread d≤8 mm;
 - 0.2 mm for products with diameter of thread 8 mm<d≤12 mm;
 - 0.3 mm for products with diameter of thread d >12 mm.
 - 2.4.3. Marking of studs
- 2.4.3.1. Studs with diameter of thread $d \ge 12$ mm are subject to marking. It is permitted to mark studs with diameter of thread $d \ge 8$ mm with using of following replacement:
 - o for strength class of 8.8;
 - + for strength class of 9.8;
 - for strength class of 10.9;
 - Δ for strength class of 12.9.
 - 2.4.3.2. Marking should be carried out on flat surface of the stud.
 - 2.4.4. Marking of hexagonal nuts
 - 2.4.4.1. Nuts with diameter of thread $d \ge 6$ mm are subject to marking.
- 2.4.4.2. Marking should be carried out on one of the face. In technically acceptable cases it is permitted to mark on lateral surfaces of nuts (fig. 2). Marking should be by indentation.

- 2.4.4.3. Dial marking of nuts (fig. 3) is permitted. In this case marking should be done on chamfers either by embossing or by indentation of symbols, or on face by indentation of symbols.
 - 2.4.5. Marking of bolts, studs and nuts with the left hand thread
- 2.4.5.1. The symbol of left thread is an arrow indicating the screwing direction of bolt, stud and tightening of the nuts.

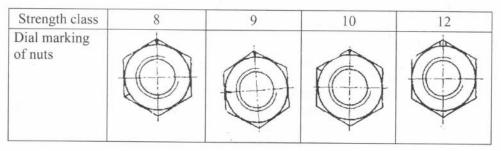


Figure 3

- 2.4.5.2. Marking of left thread should be done on face of the head of bolt, on one of the faces of nut (fig. 4a), on the flat surface of stud. In technically acceptable cases it is permitted to mark the symbol of left thread on lateral surfaces of nut and on the head of the bolts (fig. 46). In this case marking should be done by indentation.
- 2.4.5.3. The symbol of left thread for bolts and nuts can be replaced with cuts on edges of hexagonal (fig.4_B).

Figure 4

3. ACCEPTANCE

Acceptance procedures of bolts, screws, studs and nuts - as per GOST 17769 83.

3.2. Each batch of fasteners should be accompanied by the quality certificate with following information:

Name or trademark of the manufacturer;

Conventional designation of product;

List and results of the tests;

Net weights of a batch;

Means of temporary anticorrosive protection and duration of protection.

Note. It is allowed to place the quality certificate in box or in the container, in this case, it should not get damaged during transportation.

4. INSPECTION METHODS

4.1. Inspection for appearance of bolts, screws, studs and nuts should be carried out without using magnifying devices.

In case of discrepancy, it is allowed to use the magnifying glass of $2.5 - 3^x$ magnification.

- 4.2. Inspection of surface defects of bolts, screws and studs as per GOST 1759.2-82.
 - 4.3. Inspection of surface defects of nuts as per GOST 1759.3-83.
- 4.4. Inspection of dimensions of bolts, screws, studs and nuts as per GOST 1759.1-82.
- 4.5. Chamfers of the headcrest should be inspected by master (specimen) array (matrix) with the square hole made as per 1st series as per GOST 16030-70. A flat washer with the hole, diameter of which is more than the diameter of circumscribed circle of headcrest and with thickness of 0.5 of headcrest height should be established under the head of the bolt.

Turning of headcrest in hole of the specimen bush or in the pattern not permitted.

4.6. Surfaces finish of bolts, screws, studs and nuts should be checked by comparison with surface finish of samples as per GOST 9378-75.

It is permitted to carry out the inspection of surface finish with the help of measuring devices.

Surface finish of products, manufactured by cold die forging and surface finish of the end face of rod except for adjusting screws are not subject to inspection.

4.7. Surface finish of thread of bolts, screws and studs should be checked on lateral surfaces of its profile.

Surface finish of threads made by thread rolling, and surface finish of nut's thread is not subject to inspection and should be ensured by manufacturing process and tool.

4.8. Inspection methods of quality and thickness of coatings — as per GOST 9.302-79.

- 4.9. Test methods and test programs (schedules) of bolts, screws and studs made from carbon non-alloyed and alloyed steels —as per GOST 1759.4—87.
- 4.10. Tests of bolts, screws and studs made from corrosion-proof, high-temperature, heat-resistant and thermo stable steels, as well as made from non-ferrous alloys should be carried out as per the customer's request according to tab. 6 as per the methods given in GOST 1759.4-87.

Ultimate loads are given in the appendix 2, proof load — in the appendix 4.

Other tests of bolts, screws and studs should be carried out as per the agreement between the manufacturer and the customer.

- 4.11. Test methods of nuts from carbon non-alloyed and alloyed steels as per GOST 1759.5-87.
- 4.12. Tests of nuts made from corrosion-proof, high-temperature, heat-resistant and thermo stable steels, as well as made from non-ferrous alloys should be carried out as per the proof load method only as per the customer's request as given in GOST 1759.5-87.

Proof loads are given in the appendix 3.

4.13. In case of manufacturing of bolts, screws and studs by machining, without subsequent heat treatment, it is permitted to carry out test of mechanical properties on base metal or on the samples made of the base metal.

Table 6

			Groups of	materi	ials	
Mechanical characteristics	Type of test	21	22. 23, 24, 25, 26	31, 35	34	32, 33
Ultimate strength	Tensile test	X 0	X 0	X 0	X 0	X 0
Yield limit	Tensile test	X	X	X	-	-
Relative elongation	Tensile test	X	X	X	X	X
Brinell's hardness	Hardness test					X 0
Impact strength	Impact strength test		X			

^{0 —} for bolts, screws and studs with thread $d \le M 5$ and length $\le 3 d$;

X — for bolts, screws and studs with thread d > M5 and length $\geq 3d$.

5. TRANSPORTATION AND STORAGE

Temporarily anticorrosive protection of products, packing, marking of container, transportation and storage — as per GOST 18160-72.

DIAGRAM

Conventional designation of bolts, screws, studs and nuts.

Conventional designation of bolts, screws, studs and nuts should be written as follows

		Type and thickness of coating
		Material grade for product of strength classes 05, 8, 8.8 and above, groups 21-26 and 31-35
		Specifications about using of killed (C) or free machining (A) steel
		Strength class or conventional designation of group
		Length of the products (except for nuts)
		Tolerance field for threads
		Direction of field
		Thread pitch
		Nominal diameter of thread
	Desig	gn
Acci	iracy cla	ass

Examples of conventional designations of fasteners

Screw — as per GOST 17473-80 accuracy class A, design 2, diameter of thread d=12 mm with fine pitch of thread, with tolerance field of thread 6e, length l=60, strength class 5.8, made from killed steel with zinc plating of thickness 9 microns, Chromatizing (zinc-yellow plated)

Screw A2M12x1.25—6ex60.58.C.019 GOST 17473—80

Nut — as per GOST 5916—70, design 2, diameter of thread d =12 mm, with fine pitch of thread, with left hand thread, with tolerance field 6H, strength class 05, made from steel of grade 40X, with zinc plating of thickness 6 microns, Chromatizing (zinc-yellow plated)

Nut 2M12x1,25-Л—6H.05.40X.016 GOST 5916—70

Notes:

1. The following are not specified in conventional designations:

Design 1, coarse pitch thread, right hand thread, absence of coating, and also the parameters identically determined by product standards;

Accuracy class B if the standard on concrete fastener provides 2 accuracy classes (A and B).

2. If the coating which is not specified by this standard is used, its designation as per GOST 9.306-85.

APPENDIX 2 Obligatory Table 7

The minimum ultimate loads for bolts, screws and studs with coarse thread pitch

Nominal	Thread	Nominal		Minimum ultimate load, in N, for designated groups									
thread diameter, d in mm	pitch, P, in mm	cross- section area A _{S'} , mm ²	21	22	23	24; 25	26	31	32: 33	34	35		
4 5 6 7 8 10 12 14 16 18 20 22 24 27 30 33 36 39 42 45 48	0.7 0.8 1 1.25 1.5 1.75 2 2.5 2.5 2.5 3.5 3.5 4 4.5 4.5 5	8,78 14,2 20,1 28,9 36,6 58,0 84,3 115 157 192 245 303 353 459 561 694 817 976 1120 1306 1472	4470 7240 10300 14700 18700 30100 42900 58700 80100 97900 125000 176000 234000 234000 286000 353000 416000 497000 571000 666000 751000	5170 8380 11900 17000 21600 34800 49700 67900 92600 113000 145000 179000 208000 271000 330000 410000 480000 575000 661000 770000 868000	6050 9800 13900 19900 25300 40700 58100 79400 108000 132000 169000 209000 243000 317000 386000 478000 563000 673000 773000 901000 1020000	7720 12500 17700 25300 32200 -51900 74100 101000 138000 169000 267000 310000 -404000 493000 610000 718000 860000 986000 1150000 1300000	9470 15300 21700 31100 39500 63700 90900 124000 170000 207000 265000 327090 380000 496000 605000 748000 881000 1053000 1410000 1590000	2280 3690 5230 7500 9520 15100 21900 29900 40800 49900 63700 78800 91500 119000 146000 180000 212000 253500 291000 339600 383000	2720 4400 6230 8900 11300 18000 26100 35700 48700 52500 76000 93900 109000 174000 215000 253000 302000 347000 456000	4290 6960 9850 14100 17900 28400 41300 56400 76900 94100 120000 148000 225000 274000 340000 478000 549000 640000 721000	3240 5250 7440 10660 13500 21500 31209 42600 58100 71000 90700 112000 130000 170000 256000 302000 361000 414000 483000 545000		

Table 8

The minimum ultimate loads for bolts, screws and studs with fine thread pitch

Nominal	Thread	cross-		Minimum ultimate load, in N, for designated groups									
	pitch, P, in mm		21	22	23	24; 25	26	31	32; 33	34	35		
8 10 12 14 16 18 20 22 24 27 30 33 36 39 42 45 48	1 1,25 1,25 1,5 1,5 1,5 1,5 2 2 2 2 2 3 3 3	39,2 61,2 92,1 125 167 216 272 333 384 496 621 761 865 1030 1205 1400 1603	19900 31200 46900 63200 85200 110000 138000 170000 196000 252000 317000 388000 441000 525000 615000 714000 818000	23100 36100 54300 73200 98500 127000 160000 227000 292000 366000 449000 510000 608000 711000 826000 946000	27000 42200 63500 85600 115000 149000 230000 265000 342000 428000 525000 596000 711000 830000 966000 1110000	34400 53900 81000 109000 147000 190000 238000 293000 338000 436000 546000 670000 760000 906000 1060000 1232000 1411000	42200 66100 99400 134900 180000 233000 293000 360000 415000 535000 671000 822000 933000 1112000 1512000 1731000	10200 15900 23900 32200 43400 56200 70500 86600 998000 129000 161000 198000 225000 268000 313000 364000 417000	12100 19000 28500 38400 51800 67000 84000 103000 119000 153000 236000 268000 319000 374000 434000 497000	19200 30000 45100 60800 81800 106000 133000 163000 188000 243000 304000 373000 423000 505000 590000 686000 785000	14500 22600 34000 45900 61800 79900 100000 123000 142000 230000 2320000 381000 446000 593000		

APPENDIX 3 Obligatory Table 9

Proof load for nuts with height m≥0.8 d with coarse thread pitch

Nominal	Thread	Nominal			Proc	fload, in N	, for designa	ted groups		-,	
thread diameter, d in mm	pitch, P, in mm	section area of mandrel A _S ;, mm ²	21	22	23	24; 25	26	31	32; 33	34	35
1,6 2 2,5 3,5 4 5 6 7 8 10 12 14 16 18 20 22 24 27 30 33 36 39 42 45 48	0.35 0.4 0.45 0.5 0.6 0.7 0.8 1 1.25 1.75 2 2.55 3.5 4 4.5 5	1,27 2,07 3,39 5,03 6,78 8,78 14,2 20,1 28,9 36,6 58,0 84,3 115 157 192 245 303 353 459 561 694 817 976 1120 1305 1472	650 1060 1730 2570 3450 4470 7240 10300 14700 18700 29600 49200 587000 80100 97900 125000 155000 155000 234000 286000 353000 416000 497000 571000 666000 751000	750 1220 2000 2970 3990 5170 8380 11900 17000 21600 34200 49700 67900 92600 113000 145000 179000 208000 271000 330000 409000 480000 575000 661000 7700000 868000	880 1430 2340 3470 4670 6050 9800 13900 13900 25300 40000 58100 79400 108000 132000 169000 243000 317000 386000 478000 563000 673000 773000 900000 1016000	1120 1820 2980 4430 5960 7720 12500 17700 25300 32200 51000 74100 101000 138000 169000 216000 267000 310000 404000 493000 610000 718000 858000 986000 1148000 1296000	1370 2240 3660 5430 7310 9470 15300 21700 31100 39500 62600 90900 124000 170000 265000 327000 380000 496000 605000 748000 881000 1210000 1409000 1590000	330 540 880 1310 1760 2280 3690 5230 7490 9520 15100 21900 29900 40800 49900 63700 78800 91500 119000 146000 180000 212000 224000 221000 239000 339000 383000	390 640 1050 1560 2100 2720 4400 6230 8930 11300 18000 26100 35700 48700 59500 76000 93900 1109000 142000 174000 215000 253000 302000 347000 405000 456000	620 1010 1660 2460 3320 4300 6960 9850 14100 17900 28400 41300 56400 76900 94100 120000 148000 172000 225000 274000 340000 478000 549000 640000 721000	470 770 1250 1860 2500 3240 5250 7440 10700 13500 21500 31200 42600 71000 90700 112000 170000 207000 256000 302000 361000 414000 443000 545000

Table 10

Proof load for nuts with height m≥0.8 d with fine thread pitch

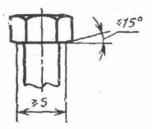
Nominal	Thread	Nominal			Proo	fload, in N,	for designat	ted groups			
thread diameter, d in mm	pitch, P, in mm	section area of mandrel A _{S'} , mm ²	21	22	23	24; 25	26	31	32; 33	34	35
8 10 10 12 12 14 16 18 20 22 22 24 24 27 30 33 36 39 42 45	1 1,25 1,25 1,5 1,5 1,5 1,5 1,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 3,3 3,3	39,2 61,5 61,2 92,1 88,1 125 167 216 204 272 258 333 318 401 384 496 621 761 865 1030 1205 1397 1603	19900 32900 31200 46900 44900 63200 85200 110000 104000 138000 170000 162000 205000 196000 252000 317000 388000 441000 524000 615000 712070 818000	23100 38100 36100 54300 52000 73200 98500 127000 120000 100000 152000 196000 237000 237000 292000 366000 448000 510000 607000 711000 824000 946000	27000 44500 42200 63500 60800 85600 115000 149000 141000 187000 230000 219000 277000 265000 342000 428000 596000 709000 831000 964000 1122000	34400 56800 53900 81000 77500 109000 147000 190000 238000 227000 293000 280000 353000 338000 436000 546000 669000 760000 905000 1060000 1411000	42200 69700 66100 99400 95100 134000 180000 233000 220000 293000 279000 360000 343000 413000 535000 671000 821000 933000 1105000 1301000 1731000	10200 16800 15900 23900 22900 32200 43400 56200 53000 70500 67100 86600 82700 104000 99800 129000 161000 198000 225000 266000 313000 417000	12100 20000 19000 28500 27300 38400 51800 67000 63200 84000 103000 98600 124000 119000 153000 193000 236000 268000 317000 433000 497000	19200 31600 30000 45100 43200 60800 81800 106000 133000 126000 156000 196000 188000 243000 372000 423000 501000 590000 685000 785000	14500 23900 22600 34000 32600 45900 61800 75500 100000 95500 123000 148000 142000 183000 230000 379000 446000 593000

APPENDIX 4 Obligatory Table 11

Proof loads for bolts, screws and studs with coarse thread pitch

Nominal thread diameter, d in mm	Thread pitch, P, in mm	Nominal cross- section area A _S , mm ²	Proof load, in N, for designated groups					
			21	22	23; 24	25	26	
4 5 6 7 8 10 12 14 16 18 20 24 27 30 33 36 39 42 45 48	0,70 0,80 1,00 1,00 1,25 1,50 1,75 2,00 2,50 2,50 2,50 3,00 3,50 3,50 4,00 4,50 4,50 5,00	8,78 14,20 20,10 28,90 36,60 58,00 84,30 115,00 157,00 192,00 245,00 303,00 353,00 459,00 561,00 694,00 817,00 976,00 1120,00 1306,00 1472,00	1540 2490 3520 5068 6410 10200 14800 20100 27500 33600 42900 53000 61800 80300 98000 121000 143000 171000 196030 229000 258000	2720 4400 6230 8960 11300 18000 26100 35700 48700 59500 76000 93900 142000 174000 215000 253000 303000 347000 405000 456000	4260 6890 9760 14000 17800 28100 40900 55800 76100 93100 119000 147000 171000 223000 272000 337000 396000 473000 543000 633000 714000	5790 9370 13300 19100 24200 38300 55600 75900 104000 127000 162000 200000 233000 370000 458000 539000 644000 739000 862000 972000	6590 10700 15100 21700 27500 43500 63200 86300 118000 144000 227000 265000 344000 421000 521000 613000 732000 980000 1104000	

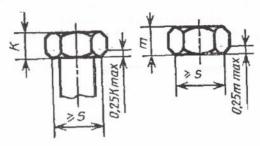
Table 12 Proof loads for bolts, screws and studs with fine thread pitch


Nominal thread diameter, d in mm	Thread pitch, P, in mm	Nominal cross- section area A _S , mm ²	Proof load, in N, for designated groups					
			21	22	23; 24	25	26	
8 10 12	1.00 1.25 1.25	39,2 61,2 92,1	6840 10700 16100	12200 19000 28600	19000 29700 44700	25800 40400 60800	29400 45900 69000	

Continuation of table 12

Nominal thread diameter, d in mm	Thread pitch, P, in mm	Nominal cross-section area As; mm²	Proof load, in N, for designated groups					
			21	22	23; 24	25	26	
14 16 18 20 22 24 27 30 33 36 39 42 45 48	1,50 1,50 1,50 1,50 1,50 2,00 2,00 2,00 2,00 2,00 3,00 3,00 3,0	125.0 167.0 216.0 272.0 333.0 384.0 496.0 621.0 761.0 865.0 1030.0 1205.0 1400.0 1603.0	21900 29200 37800 47600 58300 67200 86800 109000 133000 151000 180000 211000 245000 281000	38800 51800 67000 84000 103000 119000 154000 236000 236000 268000 319000 374000 434000 497000	60600 81000 105000 132000 162000 186000 241000 301000 369000 419000 500000 584000 679000 777000	82500 110000 143000 179000 220000 255000 327000 410000 502000 571000 680000 795000 924000 1058000	93800 125000 162000 204000 250000 288000 372000 466000 571000 649000 773000 904000 10500000 1202000	

APPENDIX 5 Obligatory


1. Chamfer on bearing surface of bolts — at a angle not more than 150 (fig. 5).

S- spanner size

Fig. 5

2. Chamfering of edges of hexagonal or square with bearing surface or end face of bolt head and with bearing surface of nut, not more than 0.25 of heights of the bolt head or nut (fig. 6).

S- spanner size

Fig. 6

- 3. Rounding-off of edges of hexagonal or square should not reduce the diameter of circumscribed circle from minimum limiting dimension.
- 4. Rounding-off of shoulders of heads of bolts and screws with countersunk and raised countersunk head and edges of bolts and screws with semicircular and cylindrical heads, should not reduce the diameter of head from the minimum limiting dimension.
- 5. Under pressing as a shear of top of semicircular, spherical and raised countersunk head is permitted, if diameter of shear area does not exceed 30 % of nominal diameter of the head for accuracy class A; 40 % of nominal diameter of the head for accuracy classes B and C.

Under pressing should not reduce the height of the head from minimum limiting dimension.

6. Inclination, forming the head not more than 5° and sphere on upper face of head, should not deduce the height of the cylindrical head from maximum limiting dimension (fig. 7).

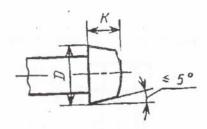


Figure 7

- 7. Reduction of minimum diameter of the head in a direction of groove, should not exceed:
 - 0.3 mm for screws with diameter of thread upto 2 mm;
 - 0.6 mm for screws with diameter of thread above 2 mm upto 6 mm;
 - 0.8 mm for screws with diameter of thread above 6 mm.
- 8. Reduction of minimum diameter of semicircular and countersink heads in a direction of rib or edges of square head rest should not exceed:
 - 0.6 mm for bolts with diameter of the head upto 30 mm;
 - 0.8 mm for bolts with diameter of the head above 30 mm.
- 9. Chamfering of square headrest should not result to turning of bolts in inspection array.
- 10. Convexity of diameter of rod under the head of bolts and screws, for products of accuracy classes A and B, not more than:
 - 0.05 mm on length of 5 mm diameter of thread upto 16 mm;
 - 0.1 mm on length of 8 mm diameter of thread from 16 upto 27 mm;
 - 0.2 mm on length of 10 mm diameter of thread above 27 mm.

For products of accuracy class C - not more than the deviation limits as per tolerance field +JT14 on the length, which is twice the nominal thread diameter.

11. Bevel cut of rod with width not more than:

One pitch of thread — for accuracy classes A and B:

Two pitch of thread - for accuracy class C.

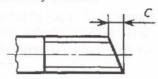


Figure 8

- 12. Countersink of hole for cotter pin with diameter not more than 1.5 of the hole diameter.
 - 13. Inclination of groove (angle α fig. 9) not more than:
 - 3° for accuracy class A;
 - 5° for accuracy classes B and C.

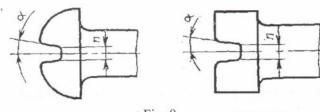


Fig. 9

- 14. Center holes on faces of head and rod are allowed.
- 15. Absence of end chamfers on products of accuracy class C with rolled thread and on rods of screws of accuracy class A and B with rolled thread is allowed.

Upon agreement between the customer and the manufacturer absence of end chamfers on rods of bolts and studs of accuracy classes A and B with rolled thread is allowed.

- 16. Rounding-off of the upper end face of the head instead of chamfers of bolts with indentation in the head is allowed.
- 17. Concavity of bottom surface of grooves toward its length with the curvature corresponding to radius of standard groove or key milling cutter, as well as convexity with radius not less than 90 mm for screws with diameter of thread upto 12 mm and not less than 150 mm for screws with diameter of thread more than 12 mm is allowed.
- 18. Presence of crater in helix of thread of nuts (while manufacturing the thread by rolling) should not deduce the sizes of thread beyond deviation limits.

Supersedes GOST 1759—70 (regarding technical requirements and marking of fasteners)

REFERENCE TECHNICAL-STANDARD DOCUMENTS

Document no	Point no.			
GOST 9.301—86	2.3.3			
GOST 9.302—79	4.8			
GOST 9.303—84	2.3.1, 2.3.2			
GOST 9.306— 85	2.3.1			
GOST 1759.1—82	4.4			
GOST 1759.2—82	2.1.2, 4.2			
GOST 1759.3—83	2.1.3, 4.3			
GOST 1759.4—87	2.2.1, 4.9, 4.10			
GOST 1759.5—87	2.2.3, 4.11, 4.12			
GOST 4784—74	2.2.5			
GOST 5632—72	2.2 4			
GOST 9378—75	4.6			
GOST 12920—67	2.2.5			
GOST 15527—70	2.2.5			
GOST 16030— 70	4.5			
GOST 17769—83	3.1			
GOST 18160—72	5			
GOST 18175—78	2.2.5			
GOST 20072—74	2.2.4			
GOST 24705—81	Introduction			
GOST 25556—82	2.2.2			