<text><text><text><text><text><text><text>

	1 S : 1720 - 1978	
India	an Standard	
OPECI		
	FICATION FOR	
COTION S	SEWING THREADS	
(Seco	ond Revision)	
Cotton and Cotton Pro	oducts Sectional Committee, TDC 2	
Chairman	Representing	
SHRI A. SUBRAMANIAM	Madura Coats Ltd, Madurai	
Members Shri A. Chellaraj (Alternate t	to	
Shri A. Subramaniam) Shri T. V. Ananthan	The Bombay Textile Research Association,	
Dr N. Balasubramaniam (Alla	Bombay	
CAPT J. M. L. BANSAL SHRI HARDIKAR (Alternate)	Naval Headquarters, New Delhi	
SHRI MARDIRAR (Michael)	Inspection Wing, Directorate General of Supplies & Disposals, New Delhi	
SHRIG. N. CHATTERJI	Ministry of Defence (R & D)	
SHRI R. GHOSH (Alternate) SHRI A. K. DALMIA	Jaya Shree Textiles & Industries Ltd, Rishra	
SHRI K. GOPINATH (Allernale) SHRI A. C. DASGUPTA	The Delhi Cloth & General Mills Co Ltd, Delhi	
SHRI DHARAM DEV SHRI S. P. GHOSAL (Alternate)	Office of the Textile Commissioner, Bombay	
DIRECTOR OF HANDLOOMS AND TEXTILES	Government of Tamil Nadu	
Shri R. N. Joshi Shri S. P. Kapur	The Millowners' Association, Bombay Ministry of Defence (DGI)	
SHRI D. K. SRIVASTAVA (Altern Shri R. M. Merchant		
Shri S. P. Mullick Shri Gautambhai S. Nanavaty	Bombay National Test House, Calcutta The Ahmadabad Millowners' Association,	
DR P. R. ROY (Alternate)	Ahmadabad	
SHRI J. K. S. NICHOLSON SHRI D. G. DAMLE (Alternate)	The East India Cotton Association Ltd, Bombay	
	(Continued on page 2)	
	© Copyright 1979	
	OF INDIAN STANDARDS	
reproduction in whole or in part b	nder the Indian Copyright Act (XIV of 1957) and by any means except with written permission of the an infringement of copyright under the said Act.	
· · · · · · · · · · · · · · · · · · ·		

ې 2.247.2 CENSE FROM BIS FOR DIRECTORATE OF STANDARDISATION - NEW DELHI ON 2/19/2020 2:13:23 PM (0.247.2

IS: 1720 - 1978

(Continued from page 1)

Members

Shri C. K. Patel Shri T. Rangaswamy

SHRI T. V. RATNAM

REPRESENTATIVE DR P. V. SESHADRI SHRI O. P. BANSAL (Alternate) SHRI N. S. SHARMA

Shri V. N. Subba Rao Shri T. A. Subramanian

DR B. V. IYER (Alternate) DR V. SUNDARAM

DR V. G. MUNSHI (Alternate) SHRI D. V. TYAGI SHRI B. SIVARAMAN (Alternate) SHRI HARKISHON N. UDANI SHRI S. M. CHAKRABORTY, Director (Tex)

Representing

Calico Mills, Ahmadabad

- The Southern India Millowners' Association, Coimbatore
- South India Textile Research Association, Coimbatore

Export Inspection Council of India, New Delhi National Textile Corporation Ltd, New Delhi

The All India Federation of Co-operative Spinning Mills Ltd, Bombay

Binny Limited, Madras

- Ahmadabad Textile Industry's Research Association, Ahmadabad
- Indian Council of Agricultural Research, New Delhi

Textiles Committee, Bombay

Keshavlal Talakchand (Pvt) Ltd, Bombay Director General, ISI (Ex-officio Member)

Secretary

SHRI O. P. KHULLAR Deputy Director (Tex), ISI

Sewing and Embroidery Threads Subcommittee, TDC 2:8

SHRI S. K. AGRAWAL SHRI R. C. CHAKRAVARTY (Alta	Ministry of Defence (R & D)
SHRIK, AMEENUR RAHMAN	T. Abdul Wahid & Company, Madras
SHRI M. L. BAGARIA	Jaya Shree Textiles & Industries Ltd, Rishra (Dist Hooghly)
SHRI K. GOPINATH (Alternate)	
SHRI R. DHARMARAJAN	Modi Thread Mills, Modinagar
SHRI P. C. KOHLI (Alternate)	
SHRI B. R. DOLE	Chemicals & Fibres of India Ltd, Thane
SHRI Y. G. DESHPANDE (Alternat	e)
Shri A. K. Mandal	Inspection Wing, Directorate General of Supplies & Disposals, New Delhi
SHRIJ. MASCARENHAS	Mettur Beardsell Ltd, Madras
SHRI P. K. DAS (Alternate)	,
SHRI A. K. MATHUR	Bata India Ltd, Calcutta
SHRI R. K. VERMANI (Alternate))

(Continued on page 18)

BY UNDER THE LICENSE FROM BIS FOR DIRECTORATE OF STANDARDISATION - NEW DELHI ON 2/19/2020 2:13:23 PM (10.247.247.21) VALID UPT

<page-header><text><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><section-header><section-header>

CENSE FROM BIS FOR DIRECTORATE OF STANDARDISATION - NEW DELHI ON 2/19/2020 2:13:23 PM (🛈.247.2

IS: 1720 - 1978

expressing the results of a test, shall be rounded off in accordance with IS: 2-1960*. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

1. SCOPE

1.1 This standard prescribes constructional details and other particulars of 43 varieties of cotton sewing threads, unbleached, bleached or dyed.

1.2 This standard does not specify the type of finish and feel of the sewing thread, nor does it specify the degree of whiteness of the bleached thread or the colour of the dyed threads.

2. MANUFACTURE

2.1 Yarn — Cotton yarn used in the manufacture of the sewing thread shall be evenly spun with suitable number of turns per metre so that a balanced thread is produced. It shall be reasonably free from spinning defects.

2.2 Sewing Thread — The sewing thread shall be reasonably free from knots, snarls and doubling defects.

2.3 Direction of Twist — Unless agreed otherwise, the direction of twist in the singles and the finished sewing thread shall be at the discretion of the manufacturer.

2.4 Finish — White sewing thread shall have a uniform bleached finish. The dyed sewing threads shall have the required shade and free from all dyeing defects.

NOTE — Sulphur dyes shall not be used when specifically required by the buyer. In case of supplies to the Ministry of Defence establishments, the black shade shall not be obtained by using sulphur dyes.

2.4.1 The threads shall be finished soft, mercerized or polished as required. The finishing and dressing materials liable to cause subsequent tendering shall not be used.

2.5 Working — The sewing threads shall work satisfactorily on all appropriate types of hand and power driven sewing machines.

3. REQUIREMENTS

3.1 Length (m/kg) and Breaking Load — The sewing threads shall comply with the requirements given in Table 1.

^{*}Rules for rounding off numerical values (revised).

			1Ś	: 1720 - 1978	
T	ABLE 1 REQUIRE	MENTS OF COTTON SEV	VING THE	READS	
		(Clause 3.1)			
Variety No.	Nominal Count	Construction	Length, Min	Single Thread Breaking Load, <i>Min</i>	
(1)	(2)	(3)	(4)	(5)	
	Cotton Count (Decitex)		m/kg	Newtons (kgf)	
1	12s/2 (500 dtex $ imes$ 2)	2 ply (2 strands, each single)	9 530	16•2 (1•65)	
2	28s/2 (210 dtex × 2)	2 ply (2 strands, each single)	22 020	6.9 (0.70)	
3	30s/2 (200 diex × 2)	2 ply (2 strands, each single)	24 560	6.4 (0.65)	
4	$\frac{38s/2}{(155 dtex \times 2)}$	2 ply (2 strands, each single)	31 340	6.7 (0.68)	
5	40s/2 (145 dtex × 2)	2 ply (2 strands, each single)	33 030	6·4 (0·65)	
6	6s/3 (1000 dtex × 3)	3 ply (3 strands, each single)	3 100	68·6 (7·00)	
7	10s/3 (590 dtex × 3)	3 ply (3 strands, each single)	5 220	40 •2 (4·10)	
8	$\frac{12s}{3}$ (500 dtex × 3)	3 ply (3 strands, each single)	6 340	27.0(2.75)	
9	16s/3 (370 dtex × 3)	3 ply (3 strands, each single)	8 200	20.1 (2.05)	
10	24s/3 (250 dtex × 3)	3 ply (3 strands, each single)	12 900	15.7 (1.60)	
11	$32s/3$ (185 dtex \times 3)	3 ply (3 strands, each single)	16 940	13.7 (1.40)	
12	40s/3 (145 dtex × 3)	3 ply (3 strands, each single)	21 5 10	9.8 (1.00)	
13	50s/3 (120 dtex × 3)	3 ply (3 strands, each single)	27 100	7.6 (0.78)	
14	$50s/3$ (120 dtex \times 3) mercerised	3 ply (3 strands, each single)	27 100	8.8 (0.90)	
				(Continued)	
		5			

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TABL	E 1 REQUIREME	NTS OF COTTON SEWIN	G THREAD	DS — Contd
Cotton Count (Decitex)m/kgNewtons (kg (100 dtex $\times 3$)15 $60s/3$ (100 dtex $\times 3$)3 ply (3 strands, each single)32 6906 6 (0 67 (1 0 52 (74 dtex $\times 3$)16 $80s/3$ (74 dtex $\times 3$)3 ply (3 strands, each single)43 5205 1 (0 52 (1 0 52 (1 000 dtex $\times 4$)17 $100s/3$ (59 dtex $\times 3$)3 ply (3 strands, each single)53 6804 0 (0 41 (0 041 (1 000 dtex $\times 4$)18 $6s/4$ (1 000 dtex $\times 4$)4 ply (4 strands, each single)2 330 (98 0 (10 02)19 $12s/4$ (250 dtex $\times 4$)4 cord (2 strands, each 2 fold)9310 (20 6 (2 10 (250 dtex $\times 4$)20 $24s/4$ (2 strands, each 2 fold)17 50 (1750 dtex $\times 4$)17 50 (2 strands, each 2 fold)21 $32s/4$ (150 dtex $\times 4$)4 cord (2 strands, each 2 fold)15 120 (12 7 (1 30) (12 0 dtex $\times 4$)23 $50s/4$ (100 dtex $\times 4$)4 ply (2 strands, each 2 fold)19 050 (98 (1 00)24 $60s/4$ (100 dtex $\times 4$)4 ply (2 strands, each 2 fold)24 200 (8 8 (0 90)25 $80s/4$ (100 dtex $\times 5$) $5 ply$ (5 strands, each single)113 (11 5) (1 3 0 113 (11 5)27 $32s/6$ (165 dtex $\times 6$) $6 cord$ (3 strands, each 2 fold)7 910 (25 5 (2 60) (3 strands, each 2 fold)28 $36s/6$ (165 dtex $\times 6$) $6 cord$ (3 strands, each 2 fold)9 070 (22 1 1 (2 15)29 $40s,6$ (145 dtex $\times 6$) $6 cord$ <b< th=""><th></th><th>Nominal Count</th><th>CONSTRUCTION</th><th></th><th>Thread Breaking Load,</th></b<>		Nominal Count	CONSTRUCTION		Thread Breaking Load,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	Cotton Count	(3)		(5) Newtons (kgf
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15			32 690	6.6 (0.67)
$ \begin{array}{c} (59 \text{ dtex} \times 3) & (3 \text{ strands, each single}) \\ 18 & 6s/4 & 4 \text{ ply} \\ (1 000 \text{ dtex} \times 4) & (4 \text{ strands, each single}) \\ 19 & 12s/4 & 4 \text{ ply} \\ (500 \text{ dtex} \times 4) & (4 \text{ strands, each single}) \\ 20 & 24s/4 & 4 \text{ cord} \\ (250 \text{ dtex} \times 4) & (2 \text{ strands, each 2 fold}) \\ 21 & 32s/4 & 4 \text{ cord} \\ (185 \text{ dtex} \times 4) & (2 \text{ strands, each 2 fold}) \\ 22 & 40s/4 & 4 \text{ cord} \\ (150 \text{ dtex} \times 4) & (2 \text{ strands, each 2 fold}) \\ 23 & 50s/4 & 4 \text{ cord} \\ (120 \text{ dtex} \times 4) & (2 \text{ strands, each 2 fold}) \\ 23 & 50s/4 & 4 \text{ cord} \\ (120 \text{ dtex} \times 4) & (2 \text{ strands, each 2 fold}) \\ 24 & 60s/4 & 4 \text{ ply} \\ (100 \text{ dtex} \times 4) & (4 \text{ strands, each 2 fold}) \\ 25 & 80s/4 & 4 \text{ ply} \\ (100 \text{ dtex} \times 4) & (4 \text{ strands, each single}) \\ 25 & 80s/4 & 4 \text{ ply} \\ (100 \text{ dtex} \times 4) & (4 \text{ strands, each single}) \\ 26 & 6s/5 & 5 \text{ ply} \\ (100 \text{ dtex} \times 5) & (5 \text{ strands, each single}) \\ 27 & 32s/6 & 6 \text{ cord} \\ (185 \text{ dtex} \times 6) & (3 \text{ strands, each 2 fold}) \\ 28 & 36s/6 & 6 \text{ cord} \\ (165 \text{ dtex} \times 6) & (3 \text{ strands, each 2 fold}) \\ 29 & 40s/6 & (145 \text{ dtex} \times 6) \\ (145 \text{ dtex} \times 6) & (3 \text{ strands, each 2 fold}) \\ 29 & 40s/6 & (145 \text{ dtex} \times 6) \\ (3 \text{ strands, each 2 fold}) \\ 29 & 40s/6 & (145 \text{ dtex} \times 6) \\ (3 \text{ strands, each 2 fold}) \\ 20 & 21 \cdot 1 (2 \cdot 15 & (2 \cdot 25 & 2 \cdot 1) (2 \cdot 15 & 2 \cdot 1) (2 \cdot 1) (2 \cdot 15 & 2 \cdot 1) (2 \cdot 1) (2 \cdot 15 & 2 \cdot 1) (2 \cdot $	16			43 520	5.1 (052)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17			53 680	4.0 (0.41)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18			2 330	98 · 0(10·09)
20 $24s/4$ (250 dtex × 4)4 cord (2 strands, each 2 fold)9 310 20.6 (2 10 (2 1021 $32s/4$ (185 dtex × 4)4 cord (2 strands, each 2 fold)11 750 17.2 (1.75 (1.75)22 $40s/4$ (150 dtex × 4)4 cord (2 strands, each 2 fold)15 120 12.7 (1.30) (2 strands, each 2 fold)23 $50s/4$ 	19		4 ply (4 strands, each single)	4 725	19·6 (2·00)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20		4 cord	9 310	20.6 (2 .10)
$ \begin{array}{c} (150 \text{ dtex} \times 4) & (2 \text{ strands, each 2 fold}) \\ 23 & 50s/4 & 4 \text{ cord} & 19050 & 9\cdot8(1\cdot00 \\ (120 \text{ dtex} \times 4) & (2 \text{ strands, each 2 fold}) \\ 24 & 60s/4 & 4 \text{ ply} & 24200 & 8\cdot8(0\cdot90 \\ (100 \text{ dtex} \times 4) & (4 \text{ strands, each single}) \\ 25 & 80s/4 & 4 \text{ ply} & 32180 & 6\cdot9(0\cdot70 \\ (74 \text{ dtex} \times 4) & (4 \text{ strands, each single}) \\ 26 & 6s/5 & 5 \text{ ply} & 1780 & 113(11\cdot5 \\ (10C0 \text{ dtex} \times 5) & (5 \text{ strands, each single}) \\ 27 & 32s/6 & 6 \text{ cord} & 7910 & 25\cdot5(2\cdot60 \\ (185 \text{ dtex} \times 6) & (3 \text{ strands, each 2 fold}) \\ 28 & 36s/6 & 6 \text{ cord} & 9070 & 22\cdot1(2\cdot25 \\ (165 \text{ dtex} \times 6) & (3 \text{ strands, each 2 fold}) \\ 29 & 40s/6 & 6 \text{ cord} & 10720 & 21\cdot1(2\cdot15 \\ (145 \text{ dtex} \times 6) & (3 \text{ strands, each 2 fold}) \\ \end{array}$	21			11 750	17·2 (1·75)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22			15 120	12.7(1.30)
$ \begin{array}{c} (100 \text{ dtex} \times 4) & (4 \text{ strands, each single}) \\ 25 & 80 \text{s}/4 & 4 \text{ ply} & 32 180 & 6 \cdot 9 (0 \cdot 70 \\ (74 \text{ dtex} \times 4) & (4 \text{ strands, each single}) \\ 26 & 6 \text{s}/5 & 5 \text{ ply} & 1 780 & 113 (11 \cdot 5 \\ (1 0 \cdot 0 \text{ dtex} \times 5) & (5 \text{ strands, each single}) \\ 27 & 32 \text{s}/6 & 6 \text{ cord} & 7 910 & 25 \cdot 5 (2 \cdot 60 \\ (185 \text{ dtex} \times 6) & (3 \text{ strands, each 2 fold}) \\ 28 & 36 \text{s}/6 & 6 \text{ cord} & 9 070 & 22 \cdot 1 (2 \cdot 25 \\ (165 \text{ dtex} \times 6) & (3 \text{ strands, each 2 fold}) \\ 29 & 40 \text{s},6 & 6 \text{ cord} \\ (145 \text{ dtex} \times 6) & (3 \text{ strands, each 2 fold}) \\ \end{array} $	23			19 050	9•8 (1•00)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24			24 200	8·8 (0·90)
26 $6s/5$ (1000 dtex $\times 5$)5 ply (5 strands, each single)1780113 (11-5)27 $32s/6$ (185 dtex $\times 6$) 6 cord 	25		4 ply (4 strands, each single)	32 180	6•9 (0•70)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26			1 780	113 (11•5)
28 36s/6 (165 dtex × 6) 6 cord (3 strands, each 2 fold) 9 070 22·1 (2·25 (3 strands, each 2 fold) 29 40s/6 (145 dtex × 6) 6 cord (3 strands, each 2 fold) 10 720 21·1 (2·15 (3 strands, each 2 fold)	27			7 910	25.5 (2.60)
29 40s,6 6 cord 10 720 21.1 (2.15 (145 dtex × 6)) (145 dtex × 6) (3 strands, each 2 fold)	28		6 cord	9 070	22•1(2•25)
	29			10 720	21.1 (2.15)
$(120 \text{ dtex} \times 6)$ (3 strands, each 2 fold)	30	50s/6	6 cord	13 550	16.7 (1.70)
(Continue	<u></u>	·	· · · · · · · · · · · · · · · · · · ·		(Continued

				5 : 1720 - 1978	
TABL	E 1 REQUIREMEN	TS OF COTTON SEWING	THREA	DS — Contd	
Variety No.	Nominal Count	Construction	Length, Min	Single Thread Breaking Load, <i>Min</i>	
(1)	(2) Cotton Count (Decitex)	(3)	(4) m/kg	(5) Newtons (kgf)	
31	60s/6 (100 dtex × 6)	6 cord (3 strands, each 2 fold)	15 120	13·2 (1·35)	
32	80s/6 (74 dtex × 6)	6 cord (3 strands, each 2 fold)	21 170	10.8 (1.10)	
33	100s/6 (59 dtex × 6)	6 cord (3 strands, each 2 fold)	26 250	8.8 (0.90)	
34	6s/8 ($1~000~dtex~ imes~8$)	8 ply (8 strands, each single)	1 100	165 (16.8)	
3 5	22s/9 (270 dtex × 9)	9 cord (3 strands, each 3 fold)	3 600	54.9 (5.60)	
36	24s/9 (250 dtex × 9)	9 cord (3 strands, each 3 fold)	4 050	49·0 (5·CO)	
37	32s/9 (185 dtex × 9)	9 cord (3 strands, each 3 fold)	5 250	40.2 (4.10)	
38	40s/9 (145 dtex × 9)	9 cord (3 strands, each 3 fold)	6 550	31.4 (3.20)	
39	50s/9 (120 dtex × 9)	9 cord (3 strands, each 3 fold)	8 280	26.0 (2.65)	
40	$\frac{6s}{10}$ (1 000 dtex × 27)	10 ply (10 strands, each single)	800	191 (19.5)	
41	20s/27 (300 dtex × 27)	27 cord (3 strands, each 9 foid)		169 (17·25)	
42	36s/27 (165 dtex × 27)	27 cord (3 strands, each 9 fold)	2 020	98·0 (10·0)	
43	24s/45 (250 dtex × 45)	45 cord (3 strands, each 15 fold)		255 (26.0)	
Aethod F Test	_	-	В-3	IS:1670-1970*	
No: minimu	m for all sewing threa d for determination o	ex = 0.1 tex. becified for length (m/kg ds irrespective of the type of f breaking load, elongation	of finish.		
		7			

IS : 1720 - 1978

3.2 Colour Fastness — The dyed threads shall conform to the following requirements:

Sl No.	Agency	Rating	Method of Test, Ref to
i)	Light (see Note)	5 or better	IS:2454-1967*
ii)	Washing	4 or better	IS: 765-1966†
iii)	Perspiration	4 or better	IS: 971-1966‡

Note — In case of supplies to the Ministry of Defence establishments, the colour fastness to light shall be 6 or better.

3.3 Cuprammonium Fluidity — The cuprammonium fluidity of sewing thread shall not be more than 8 rhes when determined by the method given in IS: 244-1969§.

3.4 Length/Mass of Sewing Thread — The average length and mass of sewing thread in a tube, reel or cone shall not be less than that marked on the label. However, a tolerance of minus two percent shall be permitted on an individual package.

3.4.1 The length/mass of sewing thread shall be determined by the method given in **B-4**.

3.5 Special Proofed Threads — In case the sewing threads are required to be used in the manufacture of ammunition, armaments, etc, these shall be specially proofed and shall comply with the additional requirements given in Table 2.

4. PACKAGING

4.1 Sewing thread shall be compactly wound in the form of tubes, reels, cones or in any other form as required. The free end of the thread shall be securely fastened to prevent unravelling.

5. MARKING

5.1 Each unit package of sewing thread shall be marked, preferably on a label, with the following information:

- a) Name of the material;
- b) Nominal count (in the case of goods supplied to government agencies) or TICKET NUMBER;

^{*}Method for determination of colour fastness of textile materials to artificial light (xenon lamp).

[†]Method for determination of colour fastness of textile materials to washing: Test 4. ‡Method for determination of colour fastness of textile materials to perspiration.

[§]Method for determination of viscosity (or fluidity) of solutions of cotton and regenerated cellulose in cuprammonium hydroxide (first revision),

- c) Nominal length or mass;
- d) Year of manufacture (in the case of goods supplied to government agencies); and
- e) Manufacturer's name, initials or trade-mark, if any.

TABLE 2 REQUIREMENTS OF SPECIAL PROOFED COTTON SEWING THREADS

(Clause 3.5)

Sl No.	CHARACTERISTIO	REQUIREMENT	Method of Test, Ref to
(1)	(2)	(3)	(4)
	A) Chemical Requirements		
i)	pH value of water extract	5.5 to 7.5	IS:1390-1961*
ii)	Water soluble matter: a) Unproofed b) Proofed	0.5 percent, Max 1.0 percent, Max	IS : 3456-1965†
iii)	Water soluble chlorides calcula- ted as NaCl	0.05 percent, Max	IS:4202-1967‡
iv)	Water soluble sulphates calcula- ted as Na ₂ So ₄	0.25 percent, Max	IS: 4203-1967§
v)	Ash on incineration (in excess of ash due to proofing agents)	0.20 percent, Max	IS:199-1973
	B) Requirements Related to Proofing		
vi)	Salicylanide content (for salicy- lanide processed)	0.1 percent, Min)
vii)	Copper content (for copper cutch processed)	0.7 percent, Min	IS: 3522 (Part
viii)	a) Chromium]	0.5 to 1.5 percent	I)-1966¶ and
	b) Copper content copper processed	0.2 percent, Min	IS:3522 (Part II)-1970**
ix)	Chromium content (for chrome processed)	0.7 to 1.0 percent	
x)	Chromium and iron	1.5 percent, Min	j

*Methods for determination of pH value of aqueous extracts of textile materials. †Method for determination of water soluble matter of textile materials.

Method for determination of chloride content of textile materials.

§Method for determination of sulphate content in textile materials.

[Methods for estimation of moisture, total size or finish, ash and fatty matter in grey and finished cotton textile materials (second revision).

Method for estimation of common preservatives used in textile industry, Part I.

**Methods for estimation of common preservatives used in the textile industry, Part II.

IS: 1720 - 1978

5.1.1 Each unit package may also be marked with the Standard Mark.

5.2 The use of the Standard Mark is governed by the provisions of *Bureau of Indian Standards Act*, 1986 and the Rules and Regulations made thereunder. The details of conditions under which the licence for the use of Standard Mark may be granted to manufacturers or producers may be obtained from the Bureau of Indian Standards.

6. PACKING

6.1 Unless otherwise specified, sewing threads shall be packed according to the method laid down in IS: 1066-1969*.

7. SAMPLING AND CRITERIA FOR CONFORMITY

7.1 Lot — The quantity of cotton sewing thread of the same variety delivered to a buyer against a despatch note shall constitute the lot.

7.2 The conformity of the lot to the requirements of this standard shall be determined on the basis of tests carried out on the samples selected from the lot.

7.3 Unless otherwise agreed to between the buyer and the seller, the number of packs to be selected at random from a lot shall be as follows:

Number of Packs in the Lot	Number of Packs to be Selected
Up to 15	5
16 " 30	7
31 " 50	10
51 " 100	15
101 ,, 300	25
301 and above	30

7.4 One tube or reel shall be selected at random from each of the pack selected according to 7.3. The tube thus selected shall constitute the test sample for determining:

- a) length in m/kg,
- b) breaking load, and
- c) length per tube or reel (subject to a minimum of 20 tubes or reels).

^{*}Code for packaging of sewing threads.

		12/
CENSE FROM BIS FOR DIRE	CTORATE OF STANDARDISATION - NEW DELHI ON 2/19/2020 2:13:2	
	IS : 1720 - 1978	ЧU
	15: 1/20 - 19/0	ALID
ments for special or less and 3 spec from the tubes d	ing colour fastness, cuprammonium fluidity and require- proofed threads, two specimens for a lot size of 30 packs cimens for a lot size of more than 30 packs shall be taken rawn in accordance with 7.4 and tested individually.	FOR DIRECTORATE OF STANDARDISATION - NEW DELHI ON 2/19/2020 2:13:23 PM (10.247.247.21) VALID UPT
	• Conformity The lot shall be declared as conforming nents of this standard if the following conditions are	PM (10.2
	he test results for lengths in m/kg or breaking load the	23 F
and the	\overline{X} and the range R or average range \overline{R} shall be calculated value of the expression $\overline{X} - kR$ or $\overline{X} - k\overline{R}$ is greater than 1 to the relevant value specified.	20 2:13:
Nore 1 — A values by the nu	verge \overline{X} is the value obtained by dividing the sum of the observed mber of tests.	:/19/20
Note 2 — R in a set of observ	ange \overline{R} is the difference between the maximum and the minimum red values.	I ON 2
	When the number of test results is 10 or more, they shall be grouped The mean range \overline{R} is the value obtained by taking the average of groups.	N DELH
	The value of the constant k is equal to 0.4.	NEV
um fluid	test specimens tested for colour fastness and cuprammoni- dity and requirements for special proofed threads satisfy vant requirements.	- NOIT
	erage of the length/mass measurements is not less than ked length.	DARDISA
	APPENDIX A	LAN
	(Clause 0.3)	OF S'
	GENERAL END USES	RATE
Variety No.	General End Uses	ЕСТО
1 2	Embroidery of emblems, insignia, etc Basting, hemming and stitching of light clothing and cables	OR DIR
3	do	S L
4	Clothing and hosiery	A BI
5	Clothing, hosiery and cables	lo 20
6	Heavy leather and canvas material, such as tarpaulins, canopies, ankle boot uppers, harness and saddlery, bag closing, harness for jacquard looms and page-cord	BY UNDER THE LICENSE FROM B
	11	ц Ц
		JER T
		UNE
		B
		ED

IS : 1720 - 197	78	
Variety No.	General End Uses	
7	Gloves, tents, harness and saddlery	
8	Light leather materials and for repair work	
9	Light leather materials, selvedge yarn in jute cloth	
10	Woollen jerseys, woollen pullovers, caps, wool-cotton short-drawers and wool-cotton vests	
11	Chappal uppers, shoes and book-binding	
12	Clothing, towels, household linen and hosiery	
13	do	
	Synthetic and blended fabrics	
15	Clothing, handkerchiefs, towels and hosiery	
16	do	
17	Handkerchiefs, hosiery and clothing	
18	Heavy leather, canvas, tarpaulin, canopies, boot uppers, harness and saddlery, bag closing and harness for jacquard looms	
9	Hand stitching of tentage and repair of door curtains	
20	Umbrellas, healds, fishnets, book-binding, carpets, and woven and knitted heavy fabrics	
21	Umbrellas, book-binding, healds and bags	
22	Umbrella, chappal uppers, bags, book-binding, clothing and healds	
23	Clothing, umbrellas, chappal uppers and healds	
24	Clothing	
25	Clothing and jari trade	
26	Boot uppers, sole and welt	
27	Book-binding, bags, tents, carpets, fishnets, healds and selvedging	
28	Book-binding, bags, tents, carpets, fishnets, healds, selvedging, canvas and footwear uppers	
29	Leather footwear uppers	
30	do	
31	Leather footwear uppers, piece-end joining and clothing	
32	Footwear and clothing	
33	Clothing	
34	Sole, welt and shoes uppers	
	12	

	RECTORATE OF STANDARDISATION - NEW DELHI ON 2/19/2020 2:13:23	3 PM
	IS : 1720 - 1978	2 I IVI
Variety No.	General End Uses	
35	Boots and shoe uppers, sole and welt, sports and travel goods, upholstery, spindle tape, book-binding, jari- making, harness for jacquards and light tarpaulins	
36	do	
37	Leather and canvas material, spindle tape, upholstery, sports goods and jari	
38	Shoe uppers, upholstery, light leather and canvas materials and book-binding	
39	Book sewing, upholstery, spindle tape and light leather materials	
40	Sole stitching of heavy boots	
41	Healds, tarpaulins and canopies	
42	do	
43	Healds and meteorological radiosonde/Rawin baloons	
	APPENDIX B	
	(Clause 3.4.1, and Table 1)	
	METHODS OF TEST	
	FIONING OF TEST SPECIMENS AND ATMOSPHERIC FIONS FOR TESTING	
	specimens shall be conditioned and tested in the standard 65 ± 2 percent relative humidity and 27 ± 2 °C tempera- 3359-1971*).	
B-2. APPARA	ATUS	
mine the actua tightly around	Reel — having a perimeter of $1 \text{ m} \pm 0.4$ percent. Deter- l perimeter of the reel with a strip of gummed paper passed the reel and secured by adhesion at the overlap. Cut the d measure its length to an accuracy of 0.1 percent.	
	able Yard Tensioning Device — capable of giving a reel- at will result in skeins of the specified length when measured f 0.5 gf/tex.	
*Method for c	conditioning of textiles.	
	13	

IS: 1720 - 1978

B-2.3 Weighing Balance — capable of weighing skeins in grams and with a sensitivity of 1 part in 500.

B-3. DETERMINATION OF LENGTH (m/kg)

B-3.1 Place the package constituting the test specimen on the wrap reel (see **B-2.1**) and wind 100 m of thread under a suitable reeling tension (see **B-2.2**). Remove the thread so wound from the wrap reel and determine the mass on the weighing balance (see **B-2.3**).

B-3.2 Calculation — Calculate the length, m/kg, by the following formula:

Length, m/kg =
$$\frac{100 \times 1000}{W_1}$$

where

 $W_1 = \text{mass in g of 100 m of sewing thread.}$

B-3.3 Similarly determine the length (m/kg) of other test specimens.

B-4. DETERMINATION OF LENGTH/MASS OF SEWING THREAD ON REEL/TUBE/CONE OR ANY PACKAGE

B-4.1 Place the package constituting the test specimen on the wrap reel and wind it into skein till the whole test specimen is exhausted. Remove the skein and determine the mass on the weighing balance.

B-4.2 Similarly determine the mass of other test specimens.

B-4.3 Determine the length of sewing thread of reel/tube/cone or any package by the following formula:

Length, m =
$$\frac{a \times W_2}{1000}$$

where

a = Length in m/kg (see B-3.2), and

 $W_2 = \text{mass of sewing thread on the package (see B-4.1)}.$

			1 \$: 1720 - 1978
	APPEN	DIX C	
	(Clause	. 0.5	
	SI UN		
TABLE 3	INTERNATION	AL SYSTEM	OF UNITS
Base Units			
QUANTITY	Unit	Symbol	
ength	metre	m	
Aass	kilogram	kg	
Time	second	s	
Electric current	ampere	А	
Thermodynamic temperature	kelvin	K	
uminous intensity	candela	cd	
mount of substance	mole	mol	
upplementary Units			
QUANTITY	Unit	Symbol	
lane angle	radian	rad	
olid angle	steradian	sr	
Derived Units			
QUANTITY	Unit	Symbol	Conversion
Force	newton	Ν	1 N = 0.101972 kgf
Inergy	joule	J	1 J = 1 N.m
Power	watt	w	1 W = 1 J/s
lux	weber	Wb	1 Wb = 1 V.s
lux density	tesla	т	$1 T = 1 Wb/m^2$
requency	hertz	Hz	1 $Hz = 1 c/s (s^{-1})$
lectric conductance	siemens	S	1 S = 1 A/V
ressure, stress	pascal	Pa	$1 Pa = 1 N/m^2$

	TABLE 4	RECOMMENDED SI UNITS FOR TEXTILES			
SL CHAR. No.	ACTERISTIC	SI UNI	Application		
		Unit	Abbreviation		
(1)	(2)	(3)	(4)	(5)	
1) Length		Millimetre	mm	Fibre	
		Millimetre, centimetre	mm, cm	Samples and tes specimens (a appropriate)	
		Metre	m	Yarns, ropes and cordages, fabrics	
2) Width		Millimetre	mm	Narrow fabrics	
		Centimetre	cm	Other fabrics	
		Millimetre, centimetre	mm, cm	Samples and tes specimen (a appropriate)	
		Centimetre, metre	cm, m	Carpets, drugget: durries (as appro priate)	
3) Thickne	ess	Micrometre (micron)	μm	Delicate fabrics	
·		Millimetre	mm	Other fabrics carpets, felts	
4) Linear	density	Tex	tex	Yarns	
		Millitex Decitex	mtex dtex	Fibres Filament and fila	
		Decitex	atex	ment yarns	
		Kilotex	ktex	Slivers, ropes and cordages	
5) Diamet	er	Micrometre (micron)	μm	Fibres	
		Millimetre	mm	Yarns, ropes cordages	
6) Circum		Millimetre	mm	Ropes, cordages	
7) Threadsa) Leng	in cloth:	Number per centimetre	ends/cm	Woven fabrics (as appropriate)	
.,	,	Number per decimetre	ends/dm		
b) Widt	th	Number per centimetre			
		Number per decimetre	picks/dm		
8) Warp the loom	nreads in	Number per centimetre	ends/cm	Reeds	
9) Stitches cloth:				Knitted fabrics (as appropriate)	
a) Leng		Courses per centimetre Courses per decimetre	courses/cm courses/dm		
b) Wide	h	Wales per centimetre	wales/cm		
		Wales per decimetre	wales/dm	(Continued)	
				(Sommandes)	
		16			
		10			

	<u> </u>			
		RECOMMENDED SI UNI	L ES — Contd	
SL No.	CHARACTERISTIC	SI UNIT		Application
			Abbreviation	
(1)	(2)	(3)	(4)	(5)
10)	Stitch length	Millimetre	mm	Knitted fabrics, made-up fabrics
11)	Mass per unit area	Grams per square metre		Fabrics
12)	Mass per unit length	Grams per metre	g/m	Fabrics
13)	Twist	Turns per centimetre Turns per metre	turns/cm turns/m	Yarns, ropes (as appropriate)
14)	Test or gauge length	Millimetre, centimetre	mm, cm	Fibres, yarns and fabric specimens (as appropriate)
15)	Breaking load	Millinewton	mN	Fibres, delicate yarns (skeins or individual)
		Newton	Ν	Strong yarns (indi- vidual or skeins), ropes and corda- ges, fabrics
16)	Breaking length	Kilometre	km	Yarns
17)	Tenacity	Millinewton per tex	mN/tex	Fibres, yarns (in- dividual or skeins)
18)	Twist factor or	Turns per centimetre×	$turns/cm \times \sqrt{tex}$	
	twist multiplier	square root of tex Turns per metre × square root of tex	turns/m $\times \sqrt{tex}$	Yarns (as appro- priate)
19)	Bursting strength	Newton per square centimetre	N/cm ²	Fabrics
20)	Tear strength	Millinewton	mN	Fabrics (as appro- priate)
211	Dile height	Newton Millimetre	N	Carnote
21) 22)	4	Mass of pile yarn in grams per square metre per millimetre pile height	mm g/m ² /mm pile height	Carpets Pile carpet
23)	Elastic modulus	Millinewton per tex per unit deformation	mN/tex/unit deformation	Fibres, yarns, strands

12/

					F		
	1				Ч		
	BUREAU OF INDIAN STANDARDS				(10.247.247.21) VALID UP		
	Headquarters;) <		
	Manak Bhavan, 9 Bahadur Shah Zafar Marg, NEW DELHI 110002				7.2		
	Telephones: 323 0131, 323 3375, 323 9402				24		
	Fax : 91 11 3234062, 91 11 3239399, 91 11 3239382				247		
	Telegrams : Manaksanstha (Common to all Offices)						
	Central Laboratory;	Telephone					
	Plot No. 20/9, Site IV, Sahibabad Industrial Area, SAHIBABAD 201010	8-77			23		
	Regional Offices:				:13:		
	Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg, NEW DELHI 110002	323	76	17	202		
	*Eastern : 1/14 CIT Scheme VII M, V.I.P. Road, Maniktola, CALCUTTA700054	323 337	86	62	202		
	Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022	60					
	Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113	235	23	15	N Z		
	†Western : Manakalaya, E9 Behind Marol Telephone Exchange, Andheri (East), MUMBAI 400093	235 8 3 2 550 839	92	95	LHI O		
	Branch Offices:				/ DE		
	'Pushpak', Nurmohamed Shaikh Marg, Khanpur, AHMEDABAD 380001	550	13	48	ΝЩ		
	Peenya Industrial Area, 1st Stage, Bangalore - Tumkur Road, BANGALORE 560058	839 55	49	55	N - NC		
	Gangotri Complex, 5th Floor, Bhadbhada Road, T. T. Nagar, BHOPAL 462003	55	40	21	TI		
	Plot No. 62-63, Unit VI, Ganga Nagar, BHUBANESHWAR 751001	40	36	27	IS/		
	Kalaikathir Buildings, 670 Avinashi Road, COIMBATORE 641037	21	01	41	R		
	Plot No. 43, Sector 16 A, Mathura Road, FARIDABAD 121001	8-28	88	01	ND/		
	Savitri Complex, 116 G. T. Road, GHAZIABAD 201001	8-71					
	53/5 Ward No. 29, R. G. Barua Road, 5th By-lane, GUWAHATI 781003	54	11	37	ю ц		
	5-8-58C, L. N. Gupta Marg, Nampally Station Road, HYDERABAD 500001	20	10	83	0		
	E-52, Chitaranjan Marg, C-Scheme, JAIPUR 302001	37	29	25	ATE		
	117/418 B, Sarvodaya Nagar, KANPUR 208005	21	68	76	OR		
	Seth Bhawan, 2nd Floor, Behind Leela Cinema, Naval Kishore Road, LUCKNOW 226001	37 21 23	89	23	RECT		
	Patliputra Industrial Estate, PATNA 800013			05			
	T. C. No. 14/1421, University P. O. Palayam, THIRUVANANTHAPURAM 695034	6	21	17			
	NIT Building, Second Floor, Gokulpat Market, NAGPUR 440010	52	51	71	BIS		
	Institution of Engineers (India) Building, 1332 Shivaji Nagar, PUNE 411005	32	36	35			
	*Sales Office is at 5 Chowringhee Approach, P. O. Princep Street,	07	10	ᅋ	SEF		
	CALCUTTA 700072	27			Ϋ́		
	†Sales Office is at Novelty Chambers, Grant Road, MUMBAI 400007	309			Ö		
	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	222	39	11			

Printed at New India Printing Press, Khurja, India