No part of these Drawings may be reproduced in any form without prior permission in writing of OFM.

Structural alloy steel hass

Technical Specifications GQST 4543 - 71 NDICAT

FOR REFERENCE ONLY

Translated by: M/s SWYAZ 2/453, Virain Kh_::d, Gomti Nagar Lucknow - 226016 ■: 0522-3098139 / 2345145 Visit us: http\\.www.swj.az.com

Note :- These Drawings are only for reference. Actual Drawings may be different and shall be issued at the time of procurement		GOST 4543-No partiof these Drawings may be reproduced in any form without prior permission in writing of
STA 1	TE STANDAR	D O F USSR
STRUCT	URAL ALLOY STEEL BARS	
	inical specifications	GOST 4543-71
ОКП 09 5040		5
	Non – observance of standard i	Effective period from : 01.01.73
diameter or this		d bar of structural alloy steels with nd with special surface finish, to be
As far as other types of r	norms of chemical composition, solled stocks in was, forgings and one Amondment No. 1, 2, 4, 5)	the standard pertains to all the stampings.
, CP	1. CLASSIFICAT	ION
	nding upon the chemical composit owing categories:	tion and properties, structural steel is
High qua	lity - A; h quality - III.	
1. The s quality steel	steel of electro slag re-mel , Amendment No. 2)	ting belongs to very high
1.2 Deper following group	nding upon the main alloying eler	ment , steel is divided into
Chromiur molybdenum, molybdenum, c manganese, and	n, manganese, chromium-mangar chromium-molybdenum-vanadiur hromium-nickel and chromium-ni chromium-silicon-manganese-nick	nese, chromium-silicon, chromium- n, chromium-vanadium, nickel- ickei with boron, chromium-silicon- kel, chromium-manganese nickel and on, chromium-nickel-molybdenum,
	p=6 1	
1 AM		

GOST 4 No part of these Drawings may be

reproduced in any form without prior permission in writing of

Chromium-nickel-molybdenum-vanadium and chromium-nicker Mnadium, chromiumaluminium and chromium-aluminium with molybdenum, chromium-manganese-nickel with molybdenum, chromium-manganese-nickel with molybdenum and titanium.

(Amended addition, Amendment No. 3)

1.3 As per the types of processing, the rolled stock is divided as follows: hot rolled and forged (including with turned or roughened surfaces): calibrated;

with special surface finish.

- 1.4 Depending upon the surface quality, the hot rolled and forged stock is divided into following groups: 1, 2, 3
- According to condition of materials, rolled stock is tranura tured: without heat treatment;

heat treatment - T;

cold worked - H (for calibrated and with special surface finish of rolled stock). 1.3 - 1.5. (Amended edition Arrendment No. 5).

2a. Assortment

2a.1. Assorthern of rolled stock should correspond to the requirements of GOST 2591 - 88, GOST 2590 - 88, GOST 2879 - 88, GOST 103 - 76, GOST 1133 - 71, GOST 7417 - 75, GOST 8559 - 75; GOST 8560 - 78, GOST 14955 - 77 and other standard technical documents.

(Amended edition, Amendment No. 5).

Example of conventional designation:

Hot rolled stock, square, having side of square 46 mm, normal accuracy of rolling B as per GOST 2591 – 88, grade 18XIT, surface quality of group 2, heat treated T:

Square 46 - B GOST 2591 - 88 18XIT - 2 - T GOST 4543 - 71

As well as, round having diameter 80 mm, normal accuracy of rolling B as per GOST 2590 – 88, grade 18X2H4MA, surface quality of group 1, mechanical properties of make 2, heat treated T:

Round 80-B GOST 2590-88 18X2H4MA-1-2-T GOST 4543-71 Note :- These Drawings are only for reference. Actual Drawings may be different and shall be

GOST 4543-71No part of these Drawings may be reproduced in any form without

prior permission in writing of

issued at the time of procurement As well as, strip having thickness 20 mm, width 75 mm as per GOST 103 – 76, grade 25XIT, surface quality of group 3, mechanical properties of make 1, without heat treatment:

> Strip 20X75 GOST 103-76 25XFF-3-1GOST 4543-71

Calibrated rolling stock, round having diameter 15 mm, with linear deviation as per h11 according to GOST 7417 – 75, grade 40XH2MA, surface gality or group E as per GOST 1051 - 73, with checking of mechanical properties M cald worked H:

Round 15-h11GOST 7417-75 40XH2MA-5-M-H GOST 4513-71

Rolling stock with special surface linin, round having diameter 8.5 mm with limit deviations as per h9 and surface quanty of group B as per GOST 14955–77, Grade 12XH3A with standardized bardenability II, heat treatment T:

8 5 – нэ GUST 14955 – 77 1. ХНЗА – В – П – Т GOST 4543 – 71

(Amended dition, Amendment No. 5).

2. TECHNICAL REQUIREMENTS

2.1 Structural alloy steel rolled stocks are manufactured inconformity with requirement of present standard according to production schedules, approved in established order.

(Amended edition, Amendment No. 5)

2.2 Grade and chemical composition of steel should correspond to those specified in table.1.

2.3 Mass fraction of phosphorous, sulphur, residues of copper, nickel and chromium in steel of all grades should not exceed the norms, specified in table.2.

No part of these Drawings may be reproduced in any form without prior permission in writing of T 4543-71 OFM.

Page 4

Table 1

Group of	Grade of		- 22		Mass	fraction of	elements, %			
steel	steel	Carbon	Silicon	Manganese	Chromium	Nickel	Molybdenum	Aluminium	Titanium	Vanadiun
Chromium	15X	0.12-0.18	0.17-0.37	0.40-0.70	0.70-1.00		5-	÷.,	-	-
	15XA	0.12-0.17	0.17-0.37	0.40-0.70	0.70-1.00	1-0	-	-	-	-
-	20X	0.17-0.23	0.17-0.37	0.50-0.80	0.70-1 Oc		-	<u> = :</u>	-	-
÷)	30X	0.24-0.32	0.17-0.37	0.50-0.80	9.80-1.0	-	-	-	-	-
	30XPA	0.27-0.33	0.17-0.37	0.50 0.80	1.00-1.30	-	-		-	-
	35X	0.31-0.39	0.17-0.27	9.5.0-0.30	0.80-1.10	-	-	=	-	-
	38XA	0.35-0.42	(.17-0.37	0.50-0.80	0.80-1.10	-	-	=	-	-
	40X	0.36-0.14	0.17-0.37	0.50-0.80	0.80-1.10	-		-	-	-
	45X	0.41-0.49	0.17-0.37	0.50-0.80	0.80-1.10	-	-	H 0	-	
	SOX	0.40-0.54	0.17-0.37	0.50-0.80	0.80-1.10	-	-		-	-
Manganese	150	0.12-0.19	0.17-0.37	0.70-1.00	-	-	-	-	-	-
	20Г	0.17-0.24	0.17-0.37	0.70-1.00	-	-	-	-2	-	-
1100	25Γ	0.22-0.30	0.17-0.37	0.70-1.00	-	-	-	-	-	-
	30Г	0.27-0.35	0.17-0.37	0.70-1.00	-	-	-	-	-	-

18

4.5

No part of these Drawings may be
reproduced in any form without
prior permission in writing of
OFM.Page 5

	Group of	Grade of				Mass	fraction of	sements, %			
	steel	steel	Carbon	Silicon	Manganese	Chromium	Nic'.el	Mo ybdenum	Aluminium	Titanium	Vanadium
N	Manganese	35Г	0.32-0.40	0.17-0.37	0.70-1.00	-		-	-		-
		40Г, 40ГР	0.37-0.45	0.17-0.37	0.70-1.00			17	-	-	-
		45Γ	0.42-0.50	0.17-0.37	0.70-1.0		-	-	-	-	-
		50F	0.48-0.56	0.17-0.37	0.50 1.00	-	-	-	-	-	-
	5	10Г2	0.07-0.15	0 17-0.3	1 20-1.60	-	-	-	20. – 1	-	-
	3012	0.26-0.35	0.1.1-0.37	1.40-1.80	-	-	-	-	-	-	
		35Г2	0.31 0.35	0.17-0.37	1.40-1.80	-	-		-	-	-
		4012	0.16-0.44	0.17-0.37	1.40-1.80	-	-	-	-	-	-
		512	0.41-0.49	0.17-0.37	1.40-1.80	-	-		-	-	-
		5052	0.46-0.55	0.17-0.37	1.40-1.80	-	-		-	-	-
		477T	0.44-0.52	0.10-0.22	0.90-1.20	-			-	0.06-0.12	-
	Thromium-	18XT	0.15-0.21	0.17-0.37	0.90-1.20	0.90-1.20	-	-	-	-	-
1	Manganese	18XIT	0.17-0.23	0.17-0.37	0.80-1.10	1.00-1.30	-	-	-	0.03-0.09	-
		20ХГР	0.18-0.24	0.17-0.37	0.70-1.00	0.75-1.05	-	-	-	-	-

Note :- These Drawings are only for reference. Actual Drawings may be different and shall be ssued at the time of procurement		i e				No part of these Drawings may be reproduced in any form without prior permission in writing of OFM.				
	.11	*0]						GOST 4543	-71 Par	- 4
		<u> </u>				4	>		Continuat	ion table
Group of steel	Grade of steel	Carbon	Silicon	Manganese		Nickel	Molybdenu m	Aluminium	Titanium	Vanadiu m
	27XITP	0.25-0.31	0.17-0.37	0.70-1.00	0 70-1.00	-	-	-	-	-
Chromium-	25XIT	0.22-0.29	0.17-0.37	0:0-1:10	1.00-1.30	-		-	0.03-0.09	-
manganese	30XIT	0.24-0.32	0 17-07	0.30-1.10	1.00-1.30	-	-	 – 	0.03-0.09	-
	40XITP	0.38-0.45	017-0.37	0.80-1.00	0.80-1.10	-	12	-	0.03-0.09	-
	25ХГМ	0.23-0.25	0.17-0.37	0.90-1.20	0.90-1.20	-	0.20-0.30	-	-	-
	38XI X	04-0.40	0.17-0.37	0.60-0.90	0.80-1.10		0.15-0.25	-	-	-
Chrome-	33XC	0.29-0.37	1.0-14	0.30-0.60	1.30-1.60	-	-	-	-	-
silicon	30AC	0.34-0.42	1.0-1.4	0.30-0,60	1.30-1.60	-	-	-	-	-
, ALV	40XC	0.37-0.45	1.2-1.6	0.30-0.60	1.30-1.60	-	-	-	-	-
Thome-	15XM	0.11-0.18	0.17-0.37	0.40-0.70	0.80-1.10	-	0.40-0.55	-	-	_
molybdenum and chrome-	20XM	0.15-0.25	0.17-0.37	0.40-0.70	0.80-1.10	-	0.15-0.25	-	_	_
molybdenum- vanadium	30XM	0.26-0.34	0.17-0.37	0.40-0.70	0.80-1.10	-	0.15-0.25	-	-	-

No part of these Drawings may be reproduced in any form without prior permission in writing of OFM. GOST 4543-71

Page 7

-	Grade of	1			Mass	fraction.	f elements, %			
Group of steel	steel	Carbon	Silicon	Manganese	Chromium	N eker	Molybdenum	Aluminium	Titanium	Vanadium
Chrome-	30XMA	0.26-0.33	0.17-0.37	0.40-0.70	1.30-1.10	(+)	0.15-0.25	-	-	-
molybdenum and chrome-	35XM	0.32-0.40	0.17-0.37	0.40-0.70	0.30-1.10	-	0.15-0.25	-	-	-
molybdenum-	38XM	0.35-0.42	0.17-0.37	0_5-0.65	0.90-1.30	-	0.20-0.30	-	-	-
vanadium	30X3MΦ	0.27-0.34	0.17-0.37	0.30-0.60	2.30-2.70	-	0.20-0.30	20 H	-	0.06-0.12
	40ΧΜΦΑ	0.37-0.44	0.17-0.37	0.40-0.70	0.80-1.10	-	0.20-0.30	-	-	0.10-0.18
Chrome-	15XΦ	0.12-0.18	0.17-0.37	0.40-0.70	0.80-1.10	-		-	-	0.06-0.12
vanadium	40A.DA	0.37-0.44	0.17-0.37	0.50-0.80	0.80-1.10	-	-	-	-	0.10-0.18
Nickel- molyhaenum	15.H2M (15HM)	0.10-0.18	0.17-0.37	0.40-0.70	-	1.50- 1.90	0.20-0.30	-	-	-
NV.	20H2M (20HM)	0.17-0.25	0.17-0.37	0.40-0.70	-	1.50- 1.90	0.20-0.30	-	-	-
Chrome-nickel and chrome-	12XH	0.09-0.15	0.17-0.37	0.30-0.60	0.40-0.70	0.50- 0.80	-	-	-	
nickel with boron	20XH	0.17-0.23	0.17-0.37	0.40-0.70	0.45-0.75	1.00- 1.40	-	-	-	-
	40XH	0.36- 0.44	0.17- 0.37	0.50-0.80	0.45-0.75	1.00- 1.40	-	-	-	-

Group of starl	Grade of				Mas	s fraction of	elements, %			
Group of steel	steel	Carbon	Silicon	Manganese	Chromium	Nickel	Molybdenum	Aluminium	Titanium	Vanadium
Chrome-nickel	45XH	0.41-0.49	0.17-0.37	0.50-0.80	0.45-0.75	1.00-1.40	-	-	-	-
and chrome- nickel with	50XH	0.46-0.54	0.17-0.37	0.50-0.80	0.45-0.75	1.00- 1.40	S -	575		-
boron	20XP	0.16-0.23	0.17-0.37	0.60-0.90	0.70-1.10	1.8	-	-	-	-
	12XH2	0.09-0.16	0.17-0.37	0.30-0.60	0.00-0.10	1.50- 1.90	-	-	-	-
	12XH3A	0.09-0.16	0.17-0.37	0.20,0.61	0.60-0.90	2.75- 3.15	-	-	-	-
	20XH3A	0.17-0.24	0.17-0.37	0.30-0.60	0.60-0.90	2.75- 3.15	-	- 20	-	-
	30XH3A	0.27-5 33	0.17-0.37	0.30-0.60	0.60-0.90	2.75- 3.15	-	-	-	-
	12X2 44	0.09-0.15	0.17-0.37	0.30-0.60	1.25-1.65	3.25- 3.65	-	-	-	7
)	2012H4A	0.16-0.22	0.17-0.37	0.30-0.60	1.25-1.65	3.25- 3.65	-	-	-	-
The one oilicon-	20XTCA	0.17-0.23	0.9-1.2	0.80-1.10	0.80-1.10	-	-	-	-	-
minganese and chrome-silicon-	25XTCA	0.22-0.28	0.9-1.2	0.80-1.10	0.80-1.10	-	-	-	-	-
manganese-	30XIC	0.28-0.35	0.9-1.2	0.80-1.10	0.80-1.10	-	-	-	-	-
nickel	30XTCA	0.28-0.34	0.9-1.2	0.80-1.10	0.80-1.10	-	-	-	-	-

Note :- These Drawings are only for reference. Actual Drawings		No part of these Drawings may be	
may be different and shall be		reproduced in any form without prior permission in writing of	71 Page 9
issued at the time of procurement	* 1	OFM.	
			Continuation table 1

C	Grade of	Mass fraction of elements, %								
Group of steel	steel	Carbon	Silicon	Manganese	Chromium	Nickel	Molybdenum	Aluminium	Titanium	Vanadium
Chrome-silicon- manganese and	35XICA	0.32-0.39	1.1-1.4	0.80-1.10	1,10-1.40	-	-	-	-	-
chrome-silicon- manganese- nickel	30XTCH2A (30XTCHA)	0.27-0.34	0.9-1.2	1.00-1.30	0.90-1.20	1.4	> -	-	-	-
Chrome- manganese	15XTH2TA (15XTHTA)	0.13-0.18	0.17-0.37	0.70-1.00	070-100	1.4-1.8	-	-	0.03-0.09	
nickel and chrome-	20XTHP	0.16-0.23	0.17-0.37	0-70-100	00-1.10	0.80- 1.10	-	-	-	
manganese- nickel with titanium and	20XIHTP	0.18-0.24	9.17-0.37	0.80-1.10	0.40-0.70	0.40- 0.70	-	2014	0.03-0.09	-
boron	38XITH	035.043	0.17-0.37	0.80-1.10	0.50-0.80	0.70- 1.00	-	-	-	-
	143115	0.13-0.18	0.17-0.37	0.70-1.00	0.80-1.10	0.80- 1.10	-	x = = =	-	
	19ХГН	0.16-0.21	0.17-0.37	0.70-1.10	0.80-1.10	0.80- 1.10	-	-		-
Thomas Ackel-	20XH2M (20XHM)	0.15-0.22	0.17-0.37	0.40-0.70	0.40-0.60	1.6-2.0	0.20-0.30	-	20	14
molybdenum	30XH2MA (30XHMA)	0.27-0.34	0.17- 0.37	0.30-0.60	0.60-0.90	1.25- 1.65	0.20-0.30	-	-	-
	38X2H2MA (38XHMA)	0.33-0.40	6.17- 0.37	0.25-0.50	1.30-1.70	1.3-1.7	0.20-0.30	-	-	-

2010

No part of these Drawings may be reproduced in any form without prior permission in writing of Page 10 GOST 4543-71 OFM. - 21

Course of stard	Conde of steel				M	ass fraction	of elements, %			
Group of steel	Grade of steel	Carbon	Silicon	Manganese	Chromium	Nickel	Molybdenum	Aluminium	Titanium	Vanadium
Chrome- nickel molybdenum	40XH2MA (40XHMA)	0.37- 0.44	0.17- 0.37	0.50-0.80	0.60-0.90	1.25-1.65	15-0.25	-		-
	40X2H2MA (40X1HBA)	0.35- 0.42	0.17- 0.37	0.30-0.60	1.25-1.65	1. 5-	0.20-0.30	-	=	-
	38XH3MA	0.33- 0.40	0.17- 0.37	0.25-0.50	0.20-1.20	2.75- 3.25	0.20-0.30	-	-	-
	18X2H4MA (18X2H4BA)	0.14- 0.20	0.17- 0.37	0.25-0.55	1.35-1.65	4.0-4.4	0.30-0.40		-	
	25X2H4MA (25X2H4BA)	0.21- 0.28	0.1/- 0.17	0.25-0.55	1.35-1.65	4.0-4.4	0.30-0.40			-
Chrome-nickel- molybdenum-	30XH2MФA (30XH2BФA)	0.27- 0.3	0.17- 0.37	0.30-0.60	0.60-0.90	2.0-2.4	0.20-0.30	-	-	0.10-0.18
vanadium and chrome-nickel-	36X2H2MΦA (36XH1MΦA)	03 0.40	0.17- 0.37	0.25-0.50	1.30-1.70	1.30- 1.70	0.30-0.40	-	-	0.10-0.18
vanadium	38XHUMQA	0.33- 0.40	0.17- 0.37	0.25-0.50	1.20-1.50	3.0-3.5	0.35-0.45	-	÷.	0.10-0.18
-10	45XH2MФА (45XMФА)	0.42- 0.50	0.17- 0.37	0.50-0.80	0.80-1.10	1.3-1.8	0.20-0.30	-	-	0.10-0.18
NV	20XH4ΦA	0.17- 0.24	0.17- 0.37	0.25-0.55	0.70-1.10	3.75- 4.15		-	-	0.10-0.18
Chrome- aluminum and chrome- aluminum- molybdenum	38X2MIOA (38XMIOA)	0.35- 0.42	0.20- 0.45	0.30-0.60	1.35-1.65	-	0.15-0.25	0.7-1.1		-

16.5

GOST 4543-71

page 10

11.1	į

No part of these Drawings may be reproduced in any form without prior permission in writing of OFM. GOST 4543-71 Page 11

Continuation table 1

ium Titanium	Vanadium
-	-
-	-
0.04-0.09	-
	0.04-0.09

1. Chemical composition of steel - category LL should correspond the norms specified in table 1 for the corresponding grade of steel.

2. In the denotation of grade, the first two digits specify the average contents of carbon in hundreds fraction of percent, letters, after digit denote: P – Boron, IO – aluminum, C- silicon, T – Titanium, Φ – Vanadium, X – Chromium, Γ – manganese, H – Nickel, M – Molybdenum, B – Tungsten. The full after letter specifies the approximate contents of alloying elements in complete units. The absence of digits denotes that this alloying element upto 1.5% is contained in the grade. The letter "A" at the end of description of grade denotes the whigh quality-steed. Very high quality steel is denoted by the letter III, after dash at the end of description of grade for example – quality – 30XIC, high quality – 30XICA; Very high quality – 30XIC – III, 30XICA – III.

The denotations of grades of steel corresponding to already existing GOST 4343 - 61 and technical specification are given in the brackets.

t. The steel of grades $30\Gamma 2$, $35\Gamma 2$, $40\Gamma 2$, $45\Gamma 2$, $50\Gamma 2$ as per the requirements of customer may be supplied with contents of manganese 1.2 - 1.6%

4. For steel of grade 20XTP, 20XHP, 20XTHP, 27XTP and 18X2H4MA, Technical addition of titanium as per calculation (without calculation of loss) up to 0.06 % is permitted.

5. In steel, containing letter P in the denotation of grade, boron is added as per the calculation (without calculating the loss) in quantity not more than 0.005% In this case, its residual contents in steel should not be less than 0.0010%

 In steel, alloy with molybdenum, grade 38XM, 30XH2MA, 30X2H2MA, 40X2H2MA, 38XH3MA, 18X2H4MA, 25X2H4MA, 30XH2MΦA partial or complete substitution of molybdenum by tungsten is permitted.

During partial substitution of molybdenum by tungsten, one part by weight of molybdenum is substituted by three parts by weight of tungsten; In this case, the total contents of molybdenum and tungsten should correspond to the norms specified in table 1.

Note - These Drawings are each			
Note :- These Drawings are only		No part of these Drawings may be	1. 1.
for reference. Actual Drawings		reproduced in any form without ⁴³⁻⁷	Page 12
may be different and shall be		prior permission in writing of	
issued at the time of procurement			
According to the 18X2H4BA, 25X2H4BA	requirement of customer, the steels v A, and 30XH2BØA is manufactured.	with grade 38XB, 30XH2BA, 30X2H2BA, 40X2H	2BA, 38XH3BA,
Mass fraction of	fungsten in these steels should be as fo	ollows:	
	30XB 0.50 - 0.80%	38XH3BA 0.50 - 0.80%	
	30XH2BA 0.50-0.80%	18X2H4BA 0.80-1.2 %	
	38X2H2BA 0.50-0.80%	25X2H4BA 0.80-1.2%	
	40X2H2BA 0.60 - 0.90%	30XH2BΦA 0.50 - 0.80%	
In specified gra	de of steel, partial replacement of tur	gsten by residual molybolnum is permitted at the ra	te of: one part-by
weight of molybdenum	is substituted by three parts by weigh	t of tungsten. In this ase, mass fraction of tungsten	should not be less
than:			
	38XB 0.30%	38XH3BA 0.30%	
	30XH2B2A 0.30%	18X2H4BA 0.50%	
	38X2H2BA 0.30%	25X2H4BA 0.50%	
	40X2H2BA 0.40%	30XH2BΦA 0.30%	
		.15%, titanium upto 0.03% (excluding the steels of gr	ade, mentioned in
		hese elements is not the reason for rejection.	
		be manufactured with mass fraction of molybdenum 0	
9. Mass fraction of	nitrogen in oxygen in converter steel	should not exceed for thin sheet of rolling and strip -	0.006 %; for other
type of rolling - 0.008%			
10. In accordance of	ith the order, in steel grade 15X, 203	ζ, 30X, 35X, 40X, 45X, 40XH, 15XΦ, 30XMA mass	fraction of silicon
	el grade 20X and 30X mass fraction of		
		alloyed by chromium and nickel, mass fraction of n	nanganese may be
	inganese equivalent, which is equal to:		
	• 0.5 (Ni, %) + 0.7 (Си, %),		
		nickel and copper should not exceed the norms of ta	ble 2. In this case,
	ese in steel should not be less than 0.3	5 %.	
(Amended edition	, Amendment No. 1, 2, 4, 5)		
		GOST 4543-71	page 12

GOST 4543-71 No part of these Drawings may be reproduced in any form without

prior permission in writing of

chine of proconcinent					
a	Ma	ss fraction of	elements in %	o not more th	FM.
Category of steel	Phosphorous	Sulphur	Copper	Nickel	Chromium
Quality	~ 0.035'	0.035'	0.30	0.30	0.30
High quality	v 0.025	V 0.025	0.3)	0.30	0.30
Very high quality	0.025	0.015	0.25	0.30	0.30

Note: -

1. For high quality steels, melted in the main martin furnaces and in the furnaces with acid lining content of phosphorus up to 0.030% is permitted.

In accordance with order in steel, manufactured with scrap process and scrap ore process, residual mass fraction of nickel and chromium should not more than 0.40 % each.

2. Quality steel of all grades can be manufactured with mass fraction of sulphur and phosphorus in accordance with requirements of table, 2 for high quality steel. In this case, letter A is added to nomenclature of grade of 1.2.

(Amended edition, Amendment No. 2.5)

2.4 In finished roll and forgings, while observing the norm of mechanical properties and other requirements of present standard, deviations on chemical composition are allowed. Permissible deviation should correspond to those specified in table 3.

					Table 3
Name of element	Upper finit of nass fraction of elements, in	Permissible deviation, in %	Name of element	Upper limit of mass fraction of elements, in %	Permissible deviation, in %
Carbon	As per table 1	± 0.01	Vanadium .	0.06 - 0.12 0.10 - 0.18	+ 0.02 ± 0.02
Aluminium	As per table 1	± 0.10	Manganese	Less than 1.0 1.0 and above	$\substack{\pm \ 0.02\\ \pm \ 0.05}$
Silicon	Less than 1.0 1.0 and above	$\begin{array}{c} \pm \ 0.02 \\ \pm \ 0.05 \end{array}$	Nickel	Less than 2.5 2.5 and above	- 0.05 - 0.10
Titanium Chromium	As per table 1 Less than 1.0 1.0 and above	$\begin{array}{c} \pm \ 0.02 \\ \pm \ 0.02 \\ \pm \ 0.05 \end{array}$	Molybdenum Tungsten	As per table 1 As per table 1	$\begin{array}{c} \pm \ 0.02 \\ \pm \ 0.05 \end{array}$

Note:- In quality steels, the deviation on contents of Su hur and phosphorus by not more than + 0.005% of each is allowed as per the approval of customer.

(Amended addition, Amendment No. 2)

2.5. In accordance with the indent, the hot 3ll' and forged roll stock are supplied both in heat treated condition (annealed, hig 'ly .mpered or normalized with high tempering) and without heat treatment; calibrated ϵ 'd with special surface finish,

Note :- These Drawings are only for reference. Actual Drawings GOST 4543-/1 Page 14

No part of these Drawings may be

reproduced in any form without

may be different and shall be

prior permission in writing of OFM.

issued at the time of phocure inent manufactured by cold worked or heat treated tempered, normalized, hardened and tempered).

2.6 The brinell hardness (HB) of annealed or high tempered roll stock with diameter or thickness above 5 mm should correspond to the norms specified in table 4.

Group of steel	Grade of steel	Diameter of indent, mm, not less than	Hardness number, HB, maximum
Chromium	15X	4.5	179
Chroninan	15XA	4.5	170
	20X	4.5	179
	30X	4.4	187
	30XPA	3.9	241
	35X	4.3	197
	38XA	4.5	207
	40X	4.1	217
	45X	4.0	229
	50X	4.0	229
Manganese	15	4.7	163
Manganese	20.5	4.5	179
	251	4.3	197
NDICA	30	4.3	197
	351	4.2	207
	40F, 40 FP	4.2	207
	401,4011 45F	4.0	229
	50F	4.0	229
	10Г2	4.3	197
-	3012	4.2	207
	3512	4.2	207
	4012	4.1	217
	401 2 45F2	4.0	229
	451 Z 50F2	4.0	229
	471°T	3.8	255
Classical	4/11 18XF	4.4	187
Chrome-manganese	18XIT	4.1	217
	20XITP	4.3	197
3	20XI P 27XI P	4.1	217
	25XIT	4.1	217
	30XIT	4.0	229
	40XITP	4.0	229
	38XI'M	+	+

or reference. Actua		<u></u>	Ccepirc	oduced in any form witho
hay be different an ssued at the time o		Grade of steel	Diameter of indent,prior mm, not more than OFM	permission in writing of
	Chrome - silicon	33XC	3.9	241
÷	/	38XC	3.8	255
		40XC	3.8	255
	Chrome -	15XM	4.5	179
	molybdenum and	20XM	4.5	179
	chrome - molyhdenum		4.0	229
	- vanadium	30XMA	4.0	229
		35XM	3.9	241
		38XM	3.9	241
		30X3MΦ	40	229
		40XM@A	Net '	269
1	Chrome - vanadium	15XΦ	4.4	187
		40XΦA	3.9	241
	Nickel - molybdenum	15H2M (15H 4)	4.3	197
	Chrome - nickel and	12XH	+	+
	chrome – nickel with	20. H	4.3	197
	boron	OXH	4.2	207
	- 1 \	45XH	4.2	207
	DICA	50XH	4.2	207
		12XH2	4.2	207
	all'	12XH2 12XH3A	4.1	
		20XH3A	4.1	217
	7	12X2H4A		255
	-	20X2H4A	3.7	269
			3.7	269
	Chrome-silicon-	30XH3A	3.9	241
	manganese and	20XFCA	4.2	207
	chrome-silicon-	25XFCA	4.1	217
	manganese-nickel	30XFC	4.0	229
	manganese mener	30XICA	4.0	229
		/30XFCH2A (30XFCHA)	3.8	255
	1	35XFCA	A	
	Chrome-manganese-	15ХГН2ТА	3.9	241
-	nickel and chrome-	(15XTH2TA)	3.7	269
	manganese-nickel	20XI HP	4.3	107
	with titanium and	14XTH	4.5	197
	boron	19XI'H	1	+
				+
		38XI'H	4.0	229

for refere	nese Drawings are only nce. Actual Drawings fferent and shall be		GOST 454 Continuati	reproduced in any form without
issued at t	the time of procurement	Grade of steel	Diameter of indentation, mm, not less than	Hardness number, HB, not more than
A .	Chrome – nickel - molybdenum	20XH2M (20XHM) 30XH2MA (30XHMA) 38X2H2MA (38XHMA) 40XH2MA (40XHMA) 40X2H2MA (40XHMA) 38XH3MA 18X2H4MA (18X2H4MA (18X2H4BA) 25X2H4MA (25X2H4BA)	4.0 3.9 3.7 3.7 3.8 3.7 3.7 3.7 3.7	229 241 269 255 69 255 269 269 269
	Chrome – nickel – molybdenum – silicon and chrome – nickel - silicon	30XH2MΦA 36X2H2MΦA (36XH1MΦA) 38XH3MΦA 45XH2MΦA (457CHMΦA) 20XH4ΦA	3.7 3.7 3.7 3.7 3.7 3.7	269 269 269 269 269
	Chrome – aluminium and chrome alun inium with n of bd chum	38Х2МЮА (38ХМЮА)	4.0	229
47	Throm - manganese - nickel with molybdenum and titanium	20ХГНМ 40ХГНМ 25ХГНМТ	+ + +	+ + +

Note:

1. Upon agreement between manufacturer and customer, it is permitted to manufacturer the roll stock without annealing and high tempering with hardness, corresponding to norms, indicated in table 4.

2. The hardness of calibrated roll in annealed or high tempered condition as well as hot rolled steel, normalized with subsequent high tempering can exceed the hardness value by 15 units of HB specified in table 4.

3. The hardness of roll stock of grade 20XHP, 25XTM, 20H2M (20HM) and 20XTHTP is set as per agreement between manufacturer and customer.

 Hardness norm for roll stock, manufactured in normalized condition are set as per the agreement with manufacturer and customer.

5. (Delete, Amendment No. 5).

6. Sign "+" denotes that up to 01. 01. 92 hardness are determined for the accumulation of data and results of tests, indicated in the document about the quality.

2.5, 2.6 (Amended edition, Amendment No. 1, 2, 3, 4, 5).

Note :- These Drawings are only for reference. Actual Drawings

GOST 4543 7No part of these Drawings may be reproduced in any form without

may be different and shall be

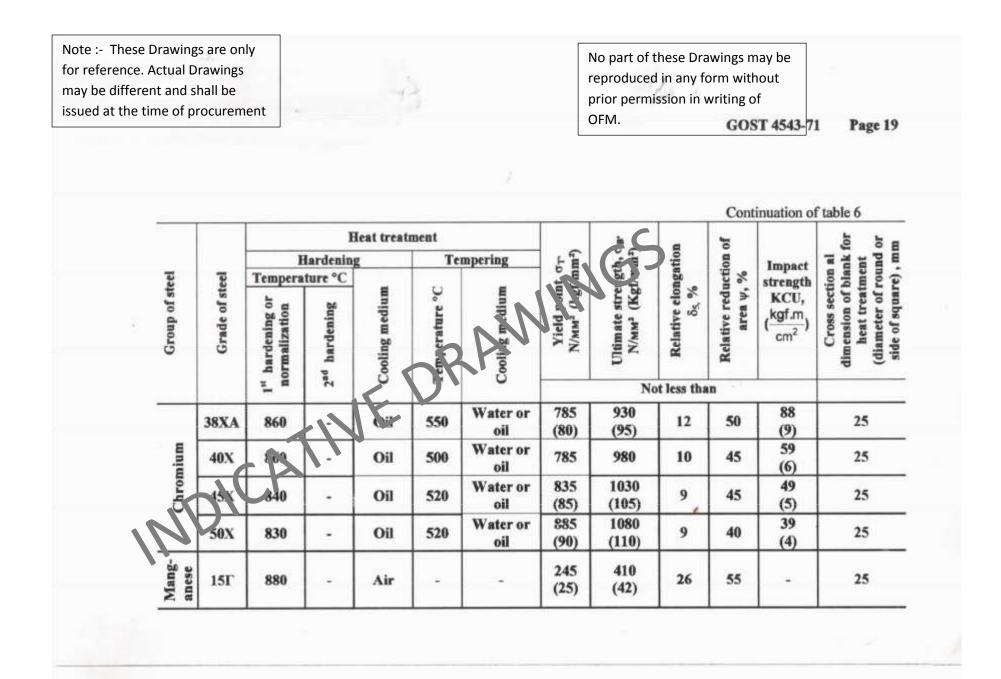
issued at the time of procurement duess of work hardened steel with diameter or thippior permission in writing of mm, should be not more than BHN 269 (Diameter of indentation, not leoFMan 3.7 mm)

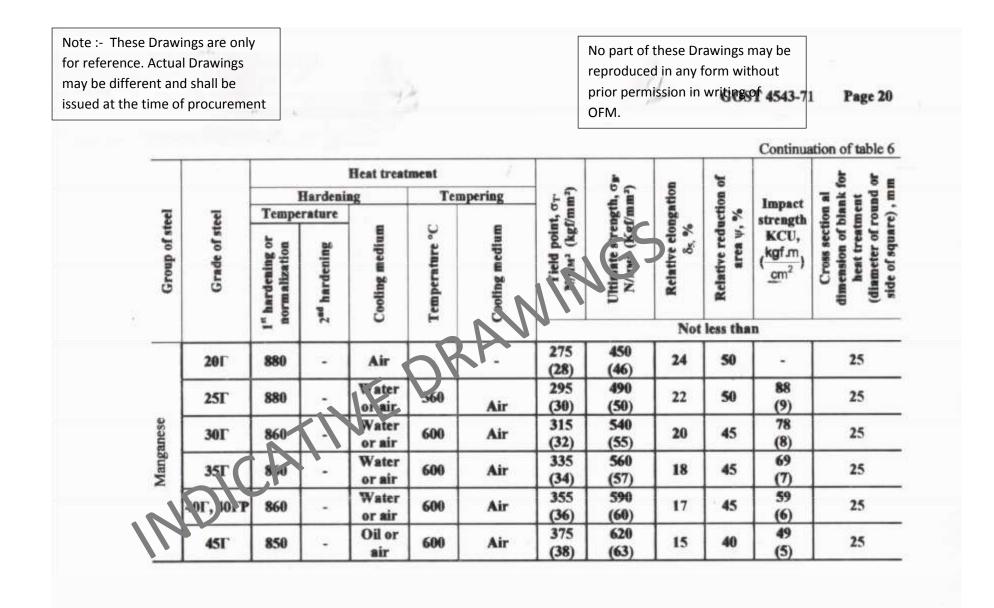
or set as per the agreement between manufacturer and customer, except the roll of grades 15X, 15XA, 20X, 30X, 35X, 15I', 18XI'T, 15XΦ, 38X2MIOA (38XMIOA), the hardness of which should correspond to the norms specified in table5. Table 5

Grades of steel	Diameter of indentation, in mm, not less than	Hardness number in HB, not more than
15X, 15XA	4.1	217
20X	4.0	2.9
30X	3.9	-41
35X	3.8	255
15	4.2	207
18XIT	44	229
15XΦ		217
30X2MIOA (38XMIOA)	3.8	255

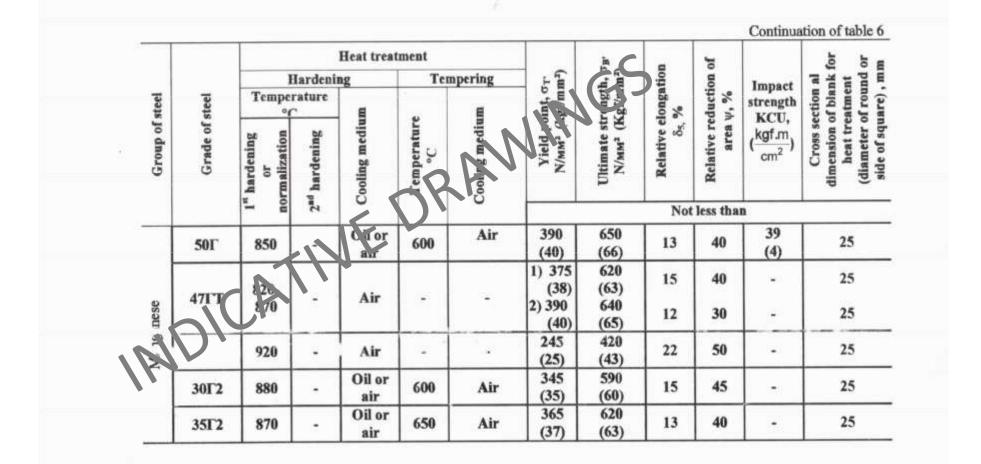
(Amended edition, Amen iment No. 2, 5)

2.8. The hardness of sunnaved and cold worked calibrated steel and with special surface finish of roll with diameter upto 5 mm inclusive as well as hardening with tempering the sell of all dimensions is set as per the agreement between manufacturer and customer

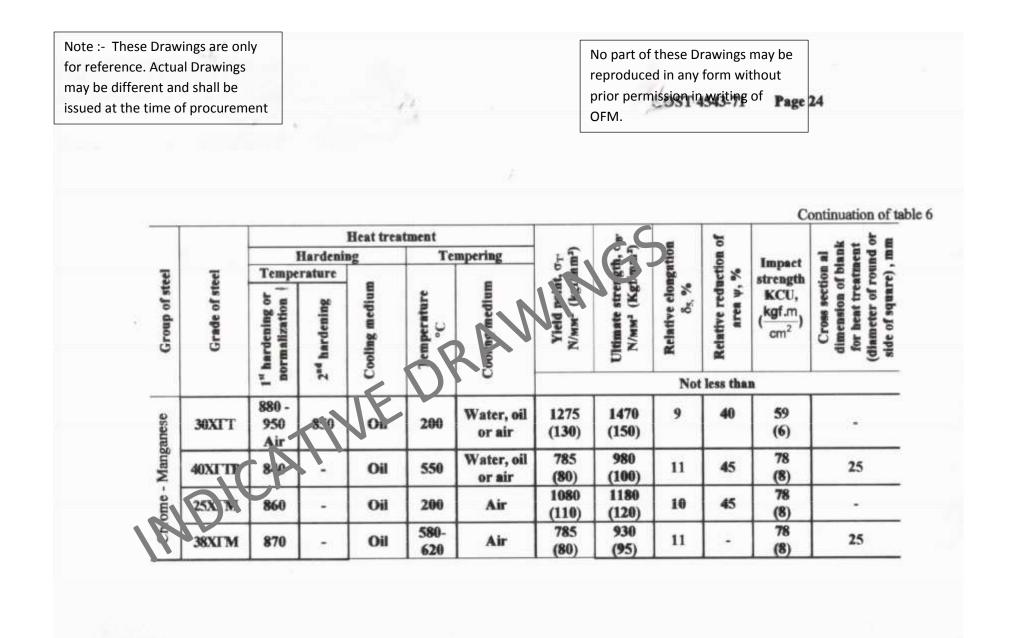

(Anena dedition, Amendment No. 5)

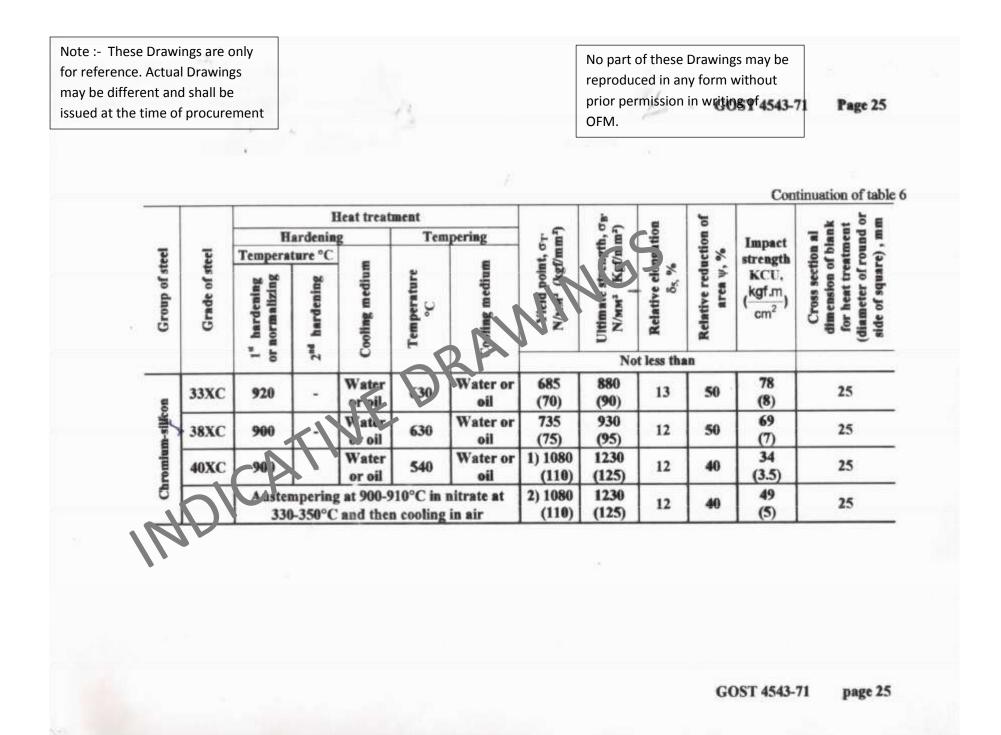

2.9. The mechanical properties of roll at normal temperature, to be determined for on grucinal heat-treated samples or samples, manufactured from heat-treated blanks should correspond to the norms specified in table 6. Inspection of mechanical properties of calibrated steel and with special surface finish of rol is carried out according to the requirement of customer with the specification in conventional designation of letter M.

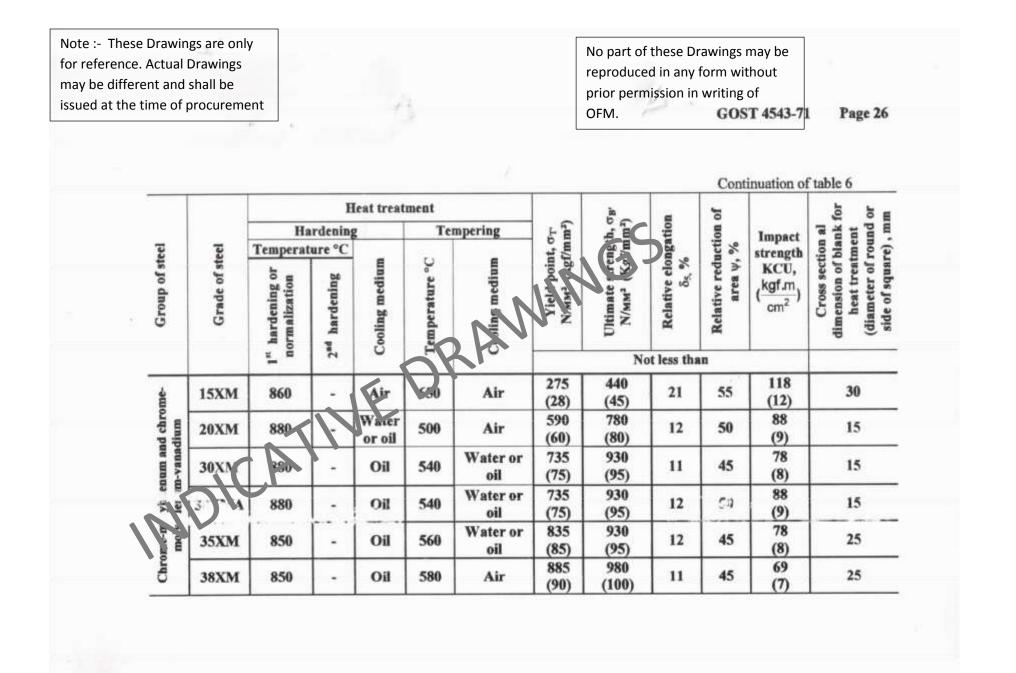
Roll stock made up of chromium nickel molybdenum, chromium nickel molybdenum steels are tested additionally for impact strength at normal temperature for samples of type 11 as per GOST 9454-78

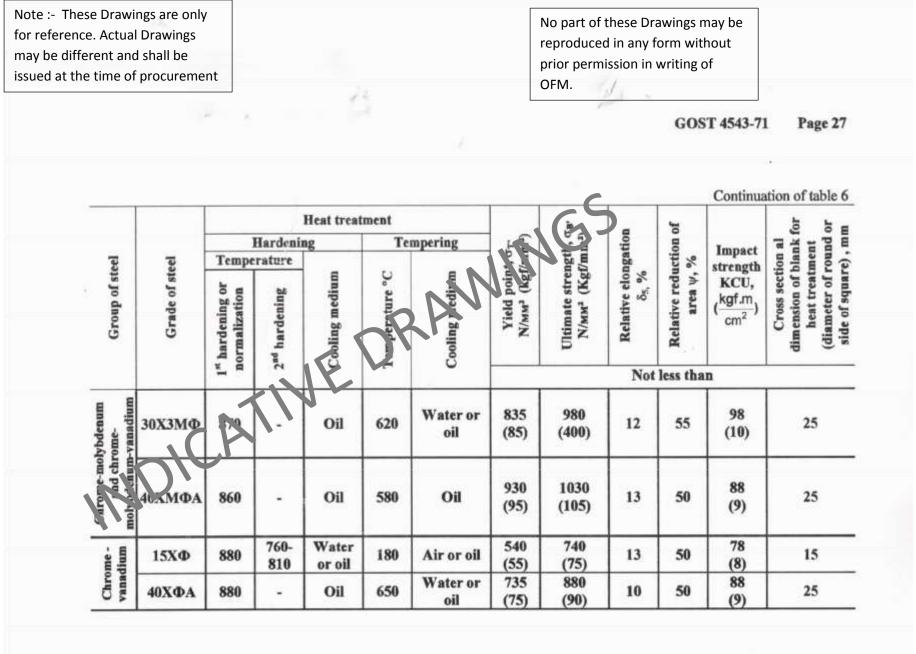

Note: - Samples for mechanical tests of roll, to be many f ctured in the hardened and tempered conditions, are not subjected to heat treatment; the norms of mechanical properties are set as per the agreement between manufacturer and customer.

	of procur	ement			3			prior pe OFM.	ermissio	n in writi GO	ng of ST 4543-7	Page 18
_						d.						Table 6
			Heat treatment Hardening Tempering					0 ^B	OB	lou		a doi
eel	cel	Tempera	rature °C		Ten	0.80	point, σ ₁ . (kgf/mm²)	trength, σ _B Kgthmm²)	n atton	action %	Impact strength	f bla atme roun roun
Group of steel	Grade of steel	1" hardening or normalizing	2 nd hardening	Cooling medium	Temperature °C	C oling medium	Norma (kg	Ultime s N/mm ² ()	Relative con	Relative reduction of area ψ , %	$\frac{\text{KCU}}{(\frac{\text{kgf.m}}{\text{cm}^2})}$	Cross section al dimension of blank for heat treatment (diameter of round or side of square), mm
-	15X 15XA	880	770- 820	Water or of	180	Air or oil	490 (50)	690 (70)	12	45	69 (7)	15
а	20X	880	770-	Wate -	180	Air or oil	635 (65)	780 (80)	11	40	59 (6)	15
Chromium	30X	860	-	Oil	500	Water or oil	685 (70)	880 (90)	12	45	69 (7)	25
Ð	267.PA	909 Air	860	Oil	200	Air	1275 (130)	1570 (160)	9	40	49 (5)	
11	35X	860	-	Oil	500	Water or oil	735 (75)	910 (93)	11	45	69 (7)	25

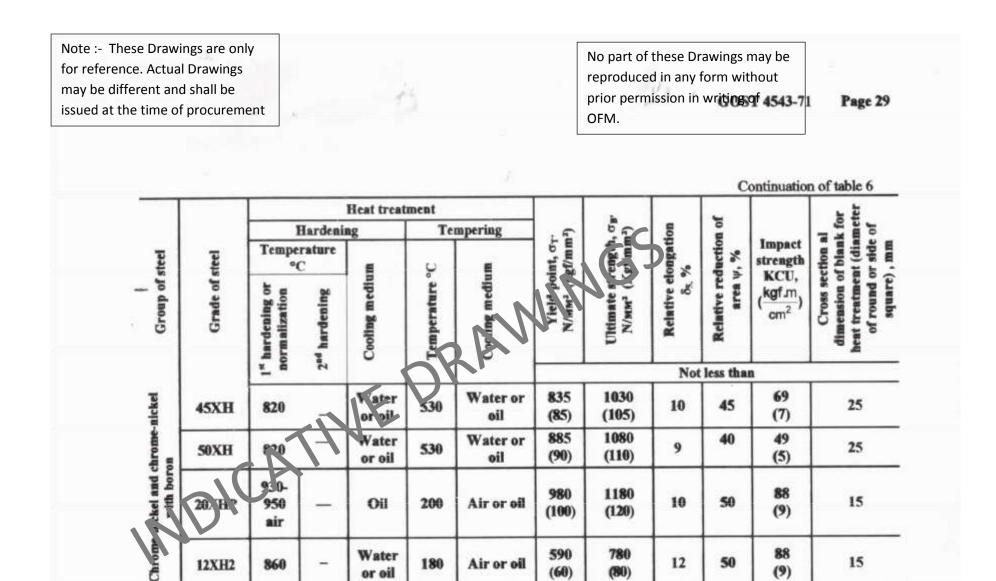






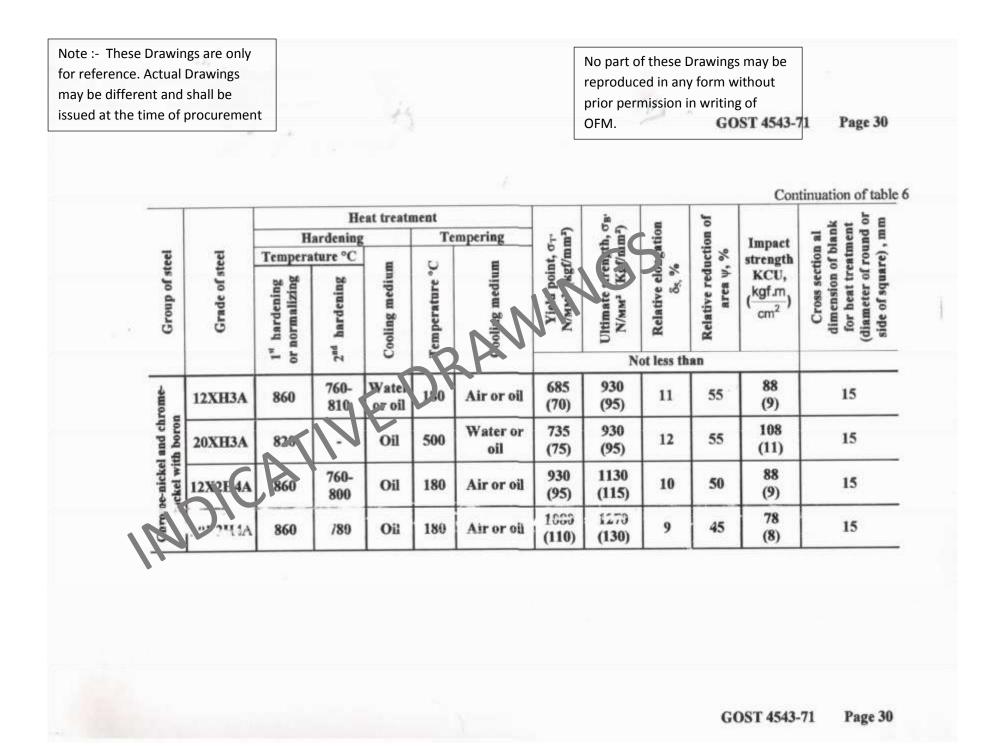

COCT 4542 71 Dama 91

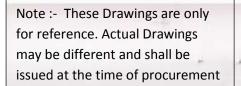
ay be different sued at the tim			it					pri OF	or permis M.		vriting of OST 454		Page 23
					Track town				- (Cont	inuation of table (
			1	Hardeni	Heat trea		mpering	-5		tion	lo no	Terror	al ank ent id or mm
	cel	cel	Tempe					Ş.	n th	nga	actio	Impact strength	ton for atm
Group of steel	Grade of steel	1" hardening or normalization	2 ^{ad} hardening	Cooling medium	demperature	Cooling mediun	Yield poir N/mm ² (Kg	Ultimate stren the	Relative elongation 8s, %	Relative reduction of area w, %	KCU, (kgf.m cm ²)	Cross section al dimension of blank for heat treatment (diameter of round o side of square) , mm	
			I."	7	2	U .	0			Not	less that	n	
	se	18XI'T	880 - 950 Air	270	Oil	200	Air or water	885 (90)	980 (100)	9	50	78 (8)	
	Manganese	20XI P	580	-	Oil	200	Air or oil	785 (80)	980 (100)	9	50	78 (8)	15
	M al	2 XIP	870		Oil	200	Air	1175 (120)	1370 (140)	8	45	59 (6)	•
	Chro	25XIT	880- 950 Air	850	Oil	200	Water, oil or air	1) 980 (100) 2) 1080	1270 (130) 1470	10 9	50 45	69 (7) 59	
			Air					(110)	(150)			(6)	



Note :- These Drawings are only for reference. Actual Drawings may be different and shall be issued at the time of procurement	No part of these Drawings may be reproduced in any form without prior permission in writing of OFM.	Page 28

		Heat treatment						a.C		¥.		Lo Lo
	1	H	lardenin	g	Tempering		, ar mm ²)	÷ 1	D fg	uo	Impact	
steel	steel	Tempera	ature °C E		ç	E	ki m	e (gth	longs	ducti	strength	tion f blan frou
Group of steel	Grade of steel	1 st hardening or normalization	2 ^{ad} hardening	Cooling medium	cur crature °	Cool g nedium	Yield po N/mm ² ()	Ultimate stre N/MM ² (Kg	Relative clongation 85, %	Relative reduction of area w, %	KCU, (kgf.m cm ²)	Cross section al dimension of blank for heat treatment (diameter of round or side of square), mm
		P, T	2			Ŭ			Not	t less than		
(el-	15H2M (15HM)	860	77(- 821	Oil	180	Air	635 (65)	830 (85)	11	50	78 (8)	15
Nickel- molybdenum	20H2M (20HM)	800	-	Oil	180	Air	685 (70)	880 (90)	10	50	78 (8)	15
dh -	2XH	910	-	Water or oil	150- 180	Air	440 (45)	640 (65)	10		88 (9)	
Chrome aic and chr a nickel wid	20XH	860	760- 810	Water or oil	180	Water, oil or air	590 (60)	780 (80)	14	50	78 (8)	15
9 8 9	40XH	820		Water or oil	500	Water or oil	785 (80)	980 (100)	11	45	69 (7)	25

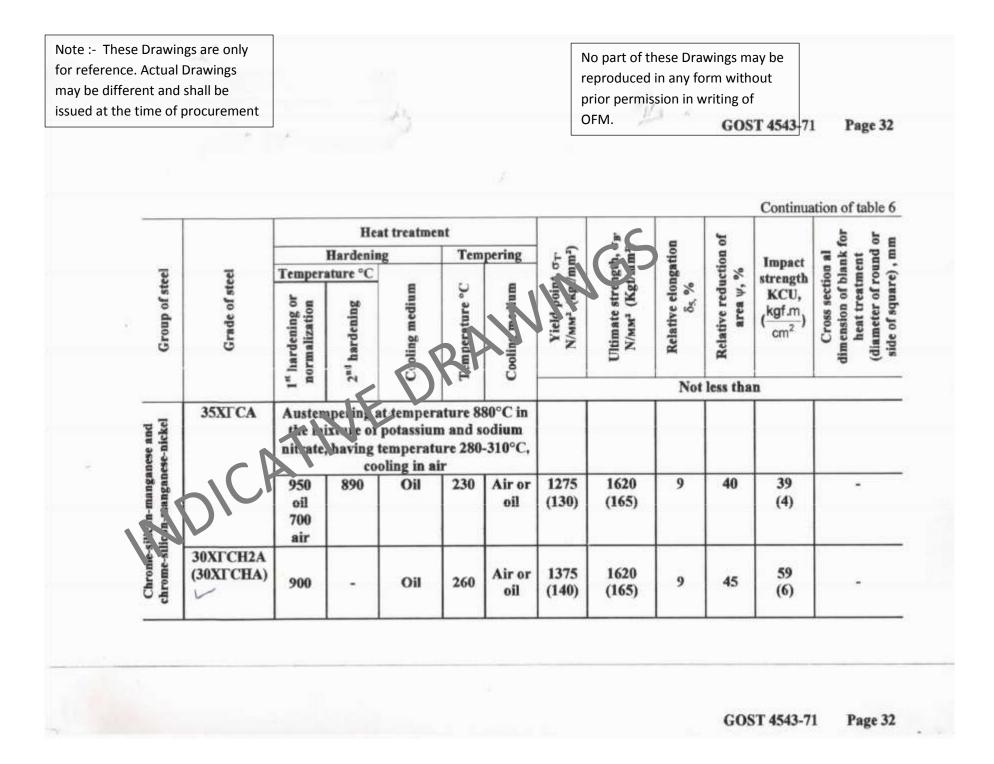

or oil

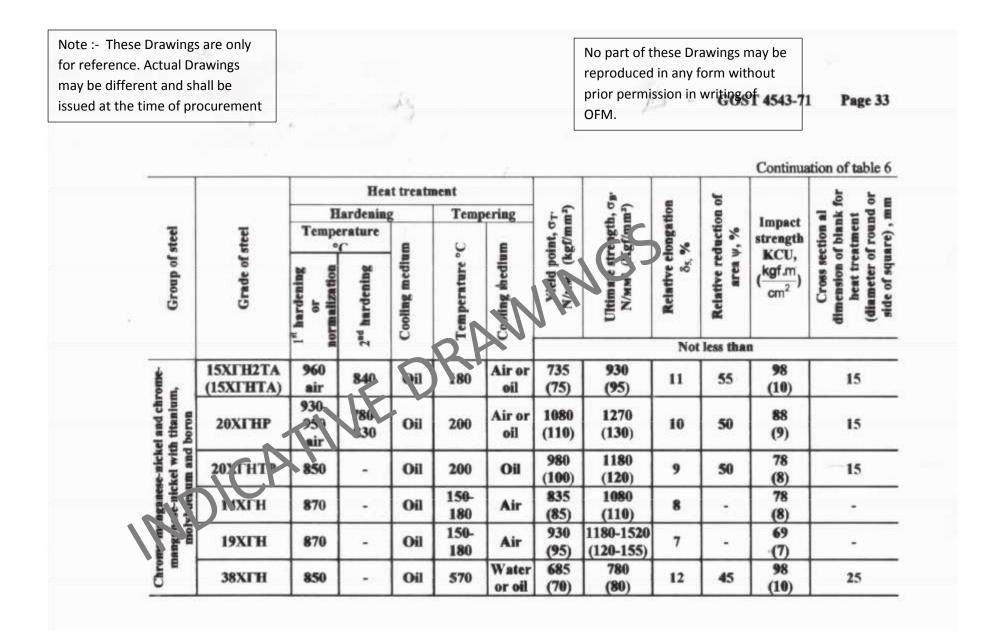

(60)

(80)

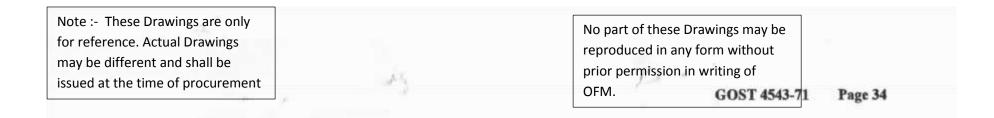
GOST 4543-71 Page 29

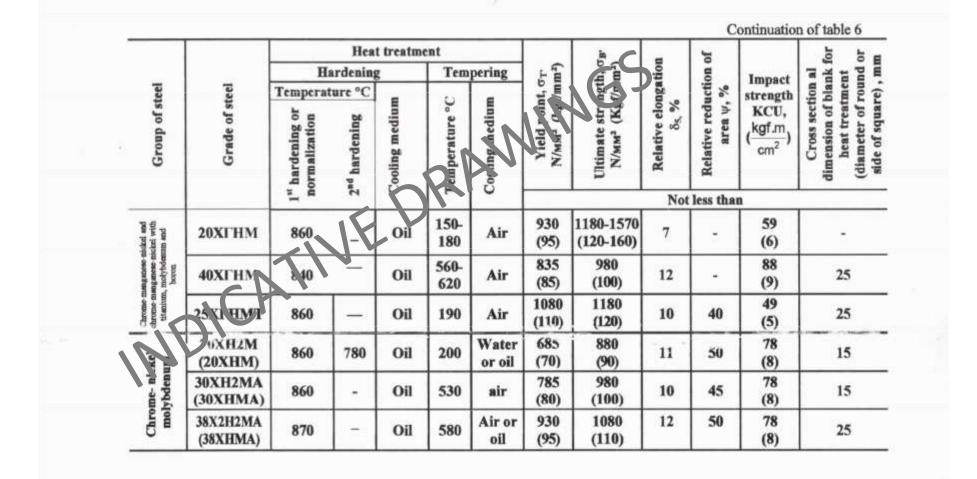
(9)

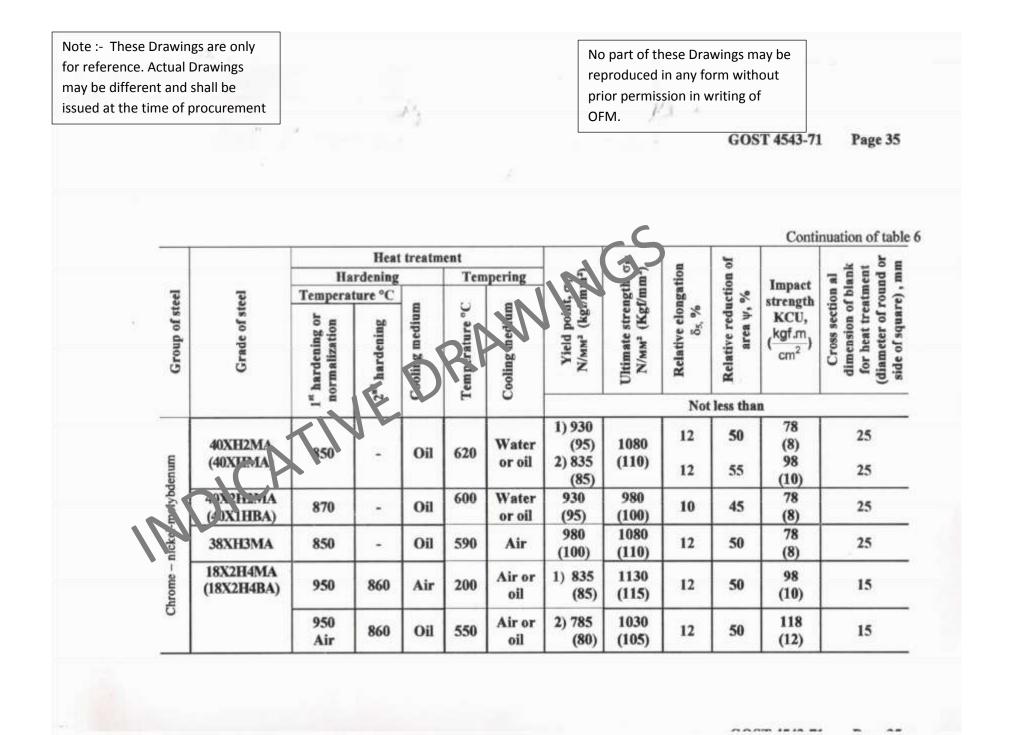




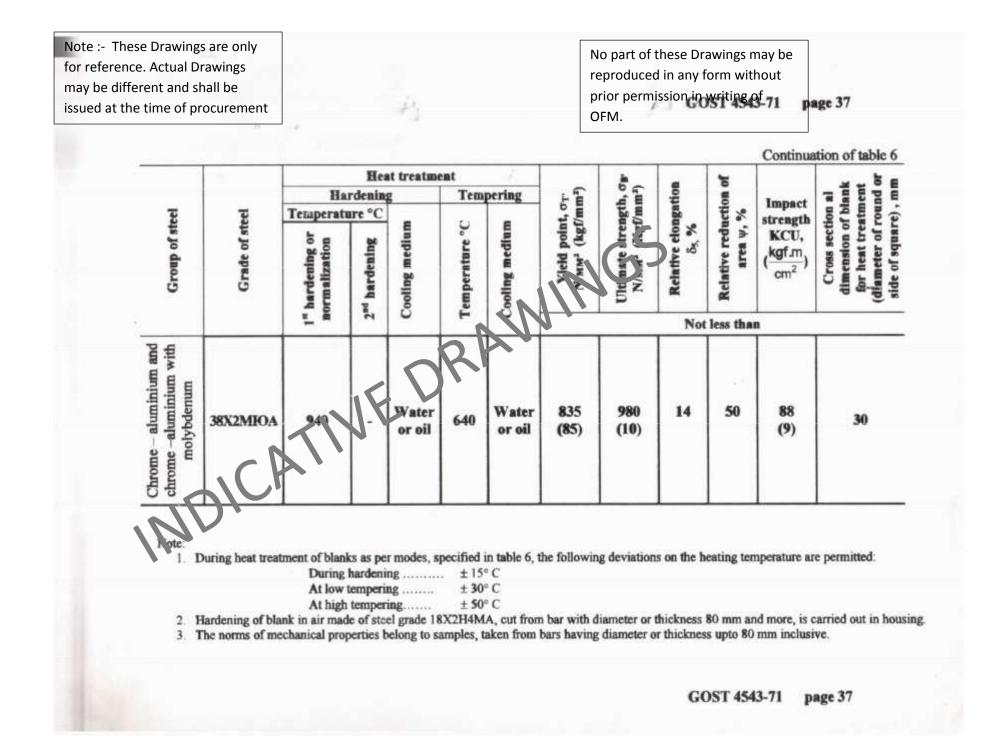
No part of these Drawings may be reproduced in any form without prior permission in writing of 4543-71 OFM.


Page 31


			Heat	t treatme	nt			an o	e	lo		for
		н	ardening		Tempering		II a	ngth, Ggr	atio	tion	Impact	a al ank ank cent
cel	5	Tempera	ture °C		1.1	-	point, σ _Γ (kgf/mm²)	ngu di	iong %	ducti /, %	strength KCU,	of bl atm f ro
Group of steel Grade of steel	" hardening or normalization	hardening	Cooling medium	l'emperature °C	onling medium	Vield point, Gr Nime (kgf/mm ²) Ultima e stragth, G	Relative e	Relative reduction of area w, %	$\left(\frac{\text{kgf.m}}{\text{cm}^2}\right)$	Cross section al dimension of blank for heat treatment (diameter of round or side of square), mm		
		1" 1 noi	2 ^{md}	Ŭ	Ĕ	0		No	t less that	an .		
	30XH3A	820		Oi	530	Water or oil	785 (80)	980 (100)	10	50	78 (8)	25
and e-	20XTCA	89	\Box	Oil	500	Water or oil	635 (65)	780 (80)	12	45	69 (7)	15
manganese and manganese-	25XICA	880	-	Oil	480	Water or oil	835 (85)	1080 (110)	10	40	59 (6)	15
=		880	-	Oil	540	Water or oil	835 (85)	1080 (110)	10	45	44 (4.5)	25
Chrome-sinc chrome-sin	зохгса	880		Oil	540	Water or oil	835 (85)	1080 (110)	10	45	49 (5)	25



100



No part of these Drawings may be reproduced in any form without prior permission in writing of OFM. **GOST 4543-71**

Page 36

				treatm						Jo		* - 5 8	
		Har	dening		Ten	pering	1 2 8	41	tio	8	Impact	al al al	
Group of steel	Grade of steel	1 st hardening or normalizing	hardening ₀ , and	Cooling medium	Temperature °C	ooline medium	Vied peint, G _T - N/mar [kgf/mm ²]	Ultimate s rengt N/MM ² (Ngdm	Relative elongation δ_{S_i} %	Relative reduction of area ψ , %	strength KCU, $\left(\frac{\text{kgf.m}}{\text{cm}^2}\right)$	Cross section al dimension of blank for heat treatment (diameter of round or	
		1" h or no	2 nd]	C00	Tem	Con		-	ot less the	1000		- 0) •	
Chrome - nickel-	25X2H4MA (25X2H4BA)	850		Oil	560	oil	930 (95)	1080 (110)	11	45	88 (9)	25	
silicon and	30XH2MD 4	860	-	Oil	680	Air	785 (80)	880 (90)	10	40	88 (9)	25	
m-silico	3(Х. Н2М ФА 1. (6. (Н1МФА)	850	-	Oil	600	Air	1080 (110)	1180 (120)	12	50	78 (8)	25	
5.	З8ХНЗМФА	850	-	Oil	600	Air	1080 (110)	1180 (120)	12	50	78 (8)	25	
nickel-molyb	45ХН2МФА	860		Oil	460	Oil	1) 1275 (130)	1420 (145)	7	35	39 (4)		
ne-nick	(45ХНМФА)	000			400		2) 1325 (135)	1470 (150)	7	35	39 (4)	-	
Chrome	20ХН4ФА	850	-	Oil	630	Water	685 (70)	880 (90)	12	50	98 (10)	25	

Note :- These Drawings are only	No part of these Drawings may be
for reference. Actual Drawings	reproduced in any form without
may be different and shall be	prior permission in writing of
issued at the time of procurement	OFM. GOST 4543-71 page 38
While testing the bars having diameter or thickness above	80 to 150 mm, reduction in relative elongation by 2 abs%; relative reduction in area by 5

abs% and Impact strength by 10 % in compliance with the norms specified in table 6 are permitted.

Reduction in relative elongation by 3 abs%, relative reduction in area by 10 abs% and Impact strength by 15 % is permitted for bars having diameter and thickness 151 mm and more.

The norms of mechanical properties of samples and bars made of steel having diameter whickness more than 100 mm rolled or forged into square having dimension 90 - 100 mm should correspond to those specified in table 6.

For steel with standardized ultimate strength of not less than 1180 N / mm² (120kg/mm²), reduction in norms of Impact strength by 9.8 J / cm² (1 kgf. m / cm²) is permitted during simultaneous increase in ultimate strength by ot ress that 98 N / mm² (10 kgf/mm²).

- 4. Norms of Impact strength are given for the samples of type 1 as per GOST 94. 78.
 - 5. While determining the mechanical properties of steel as per the agreement between manufacturer and customer, change in the mode of heat treatment is permitted as specified in table 6 with corresponding conjection of norms of mechanical properties.
 - Before hardening, it is permitted to carry out normalization. Forsteel, meant for hardening with currents of high frequency, normalization before hardening is to be carried out as per the agreement with customer.
 - 7. It is permitted to carry out tests of rolls made up at sizer of all grades after single hardening provided the norms given in table 6 are observed.
 - In those cases, if during tensile test, position of yield is not detected on the metal, do not determine the yield point (σ₁), it is permitted to determine the conventional yield point (σ₂).
 - 9. The bars with section less than that specified in table 6 are subjected to heat treatment in the complete section of roll.
 - 10. In column "dimension of section of blanks for heat treatment (round and square) "symbol "___" shows that heat treatment is done on finished samples.
 - Customer should specify the version of mechanical properties steel roll made of grades 25XΓT, 40XC, 40XH2MA (40XHMA), 18X2H4MA (18X2H4BA); (11 and 45XH2MΦA (45XHMΦA). During absence of specification of version of mechanical properties, manufacturer selects them.

of inchanical properties of roll made of steel grade 38XTM and 14XTH upto 01.01.92 are not the sign of rejection.

is corrected to carry out second hardening at temperature 860°C with cooling in oil, for rolling made of steel grade 45XH2MΦA (45XHMΦA) with version of mechanical properties 2.

(Amended edition, Amendment No. 4 and 5).

GOST 4543-71 page 38

Note :- These Drawings are only for reference. Actual Drawings may be different and shall be

GOST 45 371 No part of these Drawings may be

reproduced in any form without

issued at the time of procurement10 Bar made of steel of grades 15X, 20X, 30X DEA, 35X, 40X, 45X,

18XIT, 20XIP, 27XIP, 30XIT, 25XIM, 38XC, 30XMA, 40X Φ A, 12XH3A, 20XH3A, 12X2H4A and 30XICA manufactured according to the requirement of customer with normalized hardenability in the limits of complete marking of strip (dotted line) or with narrow strip (solid line) continuously specifying in conventional code of letter P.

The strips of hardenability and diameter of bars, having the same hardness as the facial samples after the volumetric hardening in water and oil at a corresponding distance from the cooling of face of sample and the place of measurement of hardness along the section of bar are given in drawings 1 - 18 of annexure 1.

Variation limits of hardness (maximum and minimum) along the length of endwise samples for solid and dotted lines of hardenapility are given in annexure 2.

For bars, made up of steels of grade 30XF+, norms of hardenability are set as per the agreement between manufacture and customer.

Note:

 Upon agreement between manufacture and customer, manufacture of bar of steel by checking the hardenability, it is permitted to carry out inspection of mechanical properties, if the manufacturer guarantees the conformity of those properties to norms, specified in table 6.
 Hardenability text of cars made up of steel of all grades except boron contents need not be

2. Hardenability text of bars made up of steel of all grades except boron contents need not be carried out in case of conformity of norms of hardenability to the requirement of present standard.

Variation limits of ardness (maximum and minimum) along the length of endwise sample may be changed as per the agreement between manufacture and customer.

2.11 On the surface of bars, meant for hot working and cold drawing including the turned and roughened surface 1, the local defects should be removed by transing or by dressing to a width of not less than five times of the depth.

The depth of dressing the defects should not exceed the norms, specified in table 7. Not more than two dressings to maximum depth are permitted in one section of bar with size (diameter or thickness) more than 140 mm.

Separate small notches, dents, ripples in the limits of half of sum of limit deviations are permitted on the surface of bars without dressing. Hairline cracks are not permitted.

Separate small notches, dents and ripples in the limits of half of the sum of limit deviations and also minor hairline cracks with depth not exceeding $1/4^{th}$ of the limit deviation on dimension not more than 0.2 mm are permitted on the surface of bar without dressing. Hairline cracks are not permitted on the surface of bar made of very high-quality steel. Other requirements for the surface - for the bar of surface quality of group 1.

Note :- These Drawing for reference. Actual I may be different and s issued at the time of p	Drawings shall be	GOST	reproduced in any form witho prior permission in writing of
	Dimension of ba	ar Depth of dressing of defe	UT IN
	Dimension of ba	Bar made of quality steel and high quality steel	Bar made of very high quality steel
	Above 200	6 % of dimension	3 % of dimension
	From 140 to 20	A DATA DESCRIPTION OF THE REPORT	3 % of dimension
	From 80 to 140		Half of the sum of limit
			deviation
	Less than 80	Half of the sum of h	imit deviation
	On the surfa	ce of bar of surface quality of gro	ep 3. local defects are not
		depth to be determined by inspec	
		inal size, exceeds the norms, indicate	
3			
		00	Table 8
			14010 0
1	Dimension of	I Dar In	defects, not more than
4	Dimension of	Ba made of quality	defects, not more than Bar made of very
	mm	Ba made of quality steel and high quality steel	defects, not more than Bar made of very high quality steel
	mm 100 and more	Bay made of quality steel and high quality steel Sam of limit deviation	defects, not more than Bar made of very high quality steel Negative tolerance
N	mm 100 and more Less than 100 America ed 2.12 (Deleted 2.13. Quality should correspo 14955 – 77.	Bay made of quality steel and high quality steel Sam of limit deviation Negat Ne Negat Negat Negat Ne Negat Negat	defects, not more than Bar made of very high quality steel Negative tolerance tive tolerance
N	mm 100 and more Less than 100 America ed 2.12 (Deleted 2.13. Quality should correspo 14955 – 77. (Amended ed	Bay made of quality steel and high quality steel Sam of limit deviation Negat	defects, not more than Bar made of very high quality steel Negative tolerance tive tolerance
IN	mm 100 and more Less than 100 Amerideo ed 2.12. (Deleted 2.13. Quality should corresponded 14955 – 77. (Amended ed 2.14. The dec	Ba made of quality steel and high quality steel Sam of limit deviation Negative lition, Amendment No. 5) I, Amendment No. 5) of surface and requirements on trim and to GOST 1051 – 73, bar with sp lition, Amendment No. 2) arburizing of bar with turned, roughe	defects, not more than Bar made of very high quality steel Negative tolerance tive tolerance aming of end face calibrated becial surface finish - GOST
IN	mm 100 and more Less than 100 Amenaco ed 212 (Deleted 2.13. Quality a should correspond 14955 – 77. (Amended ed 2.14. The dec bars with special sur	Bay made of quality steel and high quality steel Sam of limit deviation Negat	defects, not more than Bar made of very high quality steel Negative tolerance tive tolerance aming of end face calibrated becial surface finish - GOST
	mm 100 and more Less than 100 Amenaco ed 212 (Deleted 8.13. Quality a should correspond 14955 – 77. (Amended ed 2.14. The dece bars with special sur- permitted. As per the re- turning, roughly main 0.3 % (as per the loc zone) is checked who	Ba made of quality steel and high quality steel Sam of limit deviation Negative lition, Amendment No. 5) I, Amendment No. 5) of surface and requirements on trim and to GOST 1051 – 73, bar with sp lition, Amendment No. 2) arburizing of bar with turned, roughe	defects, not more than Bar made of very high quality steel Negative tolerance tive tolerance aming of end face calibrated becial surface finish - GOST ened and ground surface and high frequency current is not e manufactured without the fraction of carbon more than wed layer (ferrite + transition

ż

GOST 4543-71

Note :- These Drawings are only for reference. Actual Drawings may be different and shall be issued at the time of procurement

No part of these Drawings may be reproduced in any form without prior permission in writing of

2.15. Bar should be evenly trimmed. The rumpled ends and burrs are permitted. The slant of cut of bar with dimension upto 30 mm, is not regulated, more than 30 mm - it should not exceed 0.1 diameters or thickness. It is permitted to manufacture the bar having dimension upto 40 mm of off-measure length with the untrimmed ends is permitted.

Rolled bar stock is manufactured on the demand of customer:

with standardized value of crumpling of ends not more than 70 mm;

with dimension upto 140 mm without burrs and rumpled ends.

(Amended edition, Amendment Nr 5).

2.16. Bar of surface quality of group 1 is tested for upsetting in hit condition. Note. Manufacturing concern can not conduct testing for upsetting of bar with

dimension more than 80 mm.

2.17. Macrostructure of bar during impection of etched template or on fracture, should not have shrinkage cavity, porosity, blisters, cracks, peeling, slag inclusions and flakes and should correspond with requirements, specified in table 9. Table 9

								Table 9
Category		Ma	rostructu.	of bar in	points, not	more than	1	
of steel	2 Shinkare porosity 2 Non-homogen rols	Non-homogen olus point	Liquation square	General spotted liquation	Liquation at the edge	shnrinkage liquation	Sub crust bubbles	Inter crystalline cracks
Quality	3	3	3	1	1	ĩ		•
(ligh quality	2	2	2	Not per	rmitted	1	Not per	mitted
Very high quality	1	1	1		permitted	ı		

Note:

1. In bar, made up of high quality steel of grade 30XTCA, 35XTCA, 25XTCA and 20XTCA, the liquidation square not more than 3 points and in the bar made up of quality and high quality steel of grades 38X2MIOA – liquation at the edge or general spotted liquation not more than 2 points is permitted.

2. In bar, made up of very high quality steel, sub layer crystallization and light profile of not more than 3 points is permitted.

3. In steels, meant for cold machining, sub crust blowholes to depth of not more than the half of the tolerance on diameter or thickness are permitted.

 In steel of grades 12X2H4MA and 25X2H4MA with dimension more than 160 mm, permissible degree of development of inter-crystalline cracks is set as per the agreement between both manufacture and customer.

5. It is permitted to carry out the testing of macrostructure of bars by the method of ultrasonic inspection (Y3K).

GOS1 4543-71No part of these Drawings may be reproduced in any form without prior permission in writing of

OFM.

2.16-2.17. (Amended edition, Amendment No. 2.5).

2.18. As per the requirement of customer, steel is supplied :

 a) With contracted limits of contents of carbon and alloy elements in comparison with those specified in table 1, as per indent of automobile industry without considering the permissible deviation on carbon, specified in table 3;

6) With the mass fraction of sulphur and phosphorous not more than 0.025 %, each in quality steel. In this case, letter "A" is added at the end of steel grade;

B) With the mass fraction of sulphur not more than 0.015 % in high qualitative steel and not more than 0.012 % - in very high quality steel;

r) With the mass fraction of phosphorous not more than 0.020 % in high quality steel and not more than 0.012 % - in very high quality steel,

 π) By limiting the contents of sulphur as per lower limit not less than 0.020 % in qualitative steel;

e) With mass fraction of copper no more than 0.20 % in steel, meant for hot working under pressure;

ж) In etched condition;

3) With standardized purity as per non-metallic inclusions;

и) By determining the mechanical properties in bar with dimension not more than 80 mm on cross technial samples;

k) With standard hardness, not specified in table 4, in supply condition and also with less hardness in comparison with hardness specified in table 4;

by letermining the Impact strength at normal temperature on the samples of type 1 as per GOST 9454 - 78 for steel of group not specified in point 2.9;

(m) By determining the Impact strength at temperature minus 60° C and by determining the fraction of viscous component in the fraction of sample of type 1 as per GOST 9454 - 78 (for steels, meant for machines and mechanism of northern version);

 H) With standard finish of steel as to hairline cracks to be detected on the surface of parts by magnetic method or by etching. Contamination of steel should not exceed the norms, specified in table 10;

o) With standard austenitic grain size, which should not be larger than the number 5, austenitic grain size for steel of grade 38X2MIOA (38XMIOA) should not be larger than the number 4. The presence of grains of 3 numbers, which occupy the area on ground joint less than 10 % is permitted;

ii) With the inspection of machining;

p) With standard hardenability for steel of grades, not included in point 2.10;

GOST 4543No part of these Drawings may be reproduced in any form without

prior permission in writing of OFM.

c) By checking the macrostructure by etching and as per fracture simultaneously;

t) By checking the waviness in fracture;

y) By checking the banding and ferrite-pearlite structure and widmannstatten structure;

φ) In heat treated condition (hardening + tempering);

ii) With the standard of mass fraction of nitrogen in steel, smelled in the electric furnaces;

 iii) by determination of mass fraction of residual of tungsten, vanadium, titanium, molybdenum for each melting.

Note: The norms as per sub point a, μ , $3, \infty$, λ , n, p, c, y, ϕ , μ by inspection methods of purity of steel for hairline cracks (sub point μ), inspection of machinability (sub point n), waviness in the ruptures (sub point τ), banding and windmanststeen structure (sub point y) if they are not specified in special standard on the metallic bar are set by agreement between manufacture and customer or by corresponding technical document, approved in set order.

	- 5	Number airline	or permis cracks in		Maximum hair line cr steel, in m	racks in		tent of hai steel, in	
Ĵ,	Total area of part surface to be checked, in cm ²	Quality steel	High quality steel	Very high quality steel	Quality and high quality steel	Very high quality steel	Quality steel	High quality steel	Very high quality steel
	Upto 50	5	2	1	6	3	10	5	3
	above 50-100	6	3	2	7	3	10	8	5
	above 100-200	8	4	2	8	4	20	10	6
	above 200-300	10	6	3	9	4	30	15	8
	above 300-400	11	8	4	10	5	40	20	10
	above 400-600	12	9	5	12	6	60	30	18
	above 600-800	13	10	5	14	6	80	40	24
	above 800-1000	15	11	6	15	7	100	50	30

Note:

 For every subsequent 200 cm² of inspection surface of finish parts, the area of which exceeds 1000 cm², maximum one hairline crack is permitted with length not more than that specified for the area 1000 cm² with corresponding increase in total length of hairline crack.

2. On the parts, with surface area exceeding 200 cm², maximum 5 hairline cracks are permitted, on the sections of surface with area 10 cm² for quality and high quality steel, and - maximum 3 hairline cracks is permitted for very high quality steel.

(Amended edition, Amendment No. 1, 2, 5).

3. ACCEPTANCE RULES

GOST 4543 No part of these Drawings may be reproduced in any form without prior permission in writing of OFM.

3.1. (Deleted, Amendment No. 2).

3.2. Bars, strips and bundles are supplied in batches, consisting of steel of same melt, same dimension and same mode of heat treatment. Each batch should accompany the document about the quality according to GOST 7566-81.

(Amended edition, Amendment No. 2)

3.3. For checking the quality of steel, samples are taken from the batch of bars, strips and bundles:

for chemical analysis of sample according to GOST (565) - 81. Inspection a) of residual content of copper, nickel, chromium, mitrogen tungsten, vanadium, molybdenum and titanium is carried out periodically not less than once in a quarter;
 (6) for checking the surface quality and dimension - all bars, strips and bundles;
 (7) B) for the inspection of macrostructure as per rupture or by etching, for the

tensile testing and impact bending - two bars, oundles or two strips;

r) for the bulging test and determining the depth of decarburized layer — three bars, strips or bundles;

a) for checking the hardness - 2 % bars, bundles or strips having dimension more than 30 mm, also, on one bar from 1T of bars, bundles or strips with dimension 30 mm and less, but not less than five bars, bundles or strips;

e) for the determination the hardenability and grain size - on one bar, bundle or one trip from the melting - ladle for steel of all grades, except those containing boron, and on two bars, bundle or two strips from the melting - ladle of steel of grades, which c nu in boron.

√x) for determining the nonmetallic inclusions - samples according to GOST 1778 - 70.

(Amended edition, Amendment No. 2, 5).

3.4. On obtaining of unsatisfactory results of tests at least on one of the parameters, repeated tests are carried out according to GOST 7566-81. The results of repeated tests are final.

(Introduced additionally, Amendment No. 2)

4. TEST METHODS

4.1. Chemical analysis of steel are carried out as per GOST 20560 -81, GOST 12344-88, GOST 12345-88, GOST 12346-78, GOST 12347-77, GOST 12348-78, GOST 12349-83, GOST 12350-78, GOST 12351-81, GOST 12352-81, GOST 12354-

GOST 4543-71

Note :- These Drawings are only for reference. Actual Drawings may be different and shall be

issued at the time of procurement

81, GOST 12355-78, GOST 12356-81, GOST 12357-84, GOST 12359-81, GOST 12360 — 82, GOST 18895 — 81 or by other methods, as per accuracy, not being inferior to standard. Chemical analysis is carried out by standard methods in case of differences.

4.2. Geometric dimensions and the form of rolling stocks are determined with the help of measuring instruments according to GOST 26877 — 86, GOST 162-80, GOST 166-80, GOST 427-75, GOST 3749-77, GOST 5378-88, GOST 6507-78, GOST 7502 — 89, and also tools or templates, certified according to GOST 2001 - 80 or GOST 8.326-78.

4.1; 4.2 (Amended edition, Amendment No. 5).

 \checkmark 4.3. The surface quality is checked without using the marninging devices. If necessary, carry out brightening or etching of surface and for ber with special surface finish having diameter upto 3 mm inclusive, visual inspection is carried out with 10^X magnifying glass additionally. Depth of detected affects on the surface of bar is determined by inspection of dressing or filling

(Amended edition, Amendment No 2.5).

4.4a. From each selected the, bar, trip or bundle are selected for inspection:

for the tensile testing orield point, ultimate strength, relative elongation, relative reduction of area), obsetting, determinations of depth of decarburized layer, grain size and hordenability - on one sample;

for the testing of impact bending - on each sample of each type;

for hspection of macrostructure - one template.

Sampling from bundles for all types of tests is carried out at a distance not less 1, turns from the end of reeling/unrolling.

(Amended edition, Amendment No. 5).

4.4. Inspection of macrostructure of bar by etching method or as per rupture are carried out according to GOST <u>10243</u> - 75, and by ultrasonic – according to the method of plant – supplier.

4.5. Sampling for mechanical tests is carried out according to GOST 7564-73 (version 1).

 \sim 4.6. Carry out bulging test in hot condition according to GOST 8817 - 82. Samples are heated upto temperature 1150 - 1250° C and upset to 65 % (upto 1/3 with respect to original height.

(Amended edition, Amendment No. 5).

 $\sqrt{4.7.}$ Tensile testing (yield point, ultimate strength, relative elongation, relative reduction of area) is carried out according to GOST 1497 – 84 in round samples of

No part of these Drawings may be reproduced in any form without prior permission in writing of

GOST 4543-71 No part of these Drawings may be reproduced in any form without prior permission in writing of

five-fold length with diameter 5 or 10 mm. It is permitted to conduct tests in fullscale samples by section, not less indicated in table 6.

Tests for Impact strength at normal temperature is carried out in the samples of the type Iand type II according to GOST 9454 - 78 at a temperature minus 60° C - on samples of type 1 according to GOST 9454 — 78. It is permitted to carry out Impact strength test on samples of type 3 with thickness of bar 'ess than 10 mm. Test results of bar made of chrome-nickel-molybdenum and chrome-nickel-molybdenumvanadium steel for Impact strength on samples of type II according to GOST 9454 - 78 should be recorded in document about the quality.

The percentage viscous component in rupture of samples is determined according to the method that given in appendix 3.

It is permitted to use the nondestructive methods of hist according to matched procedure.

(Amended edition, Amendment No.1, 1, 1, 5).

4.8. Depth of decarbonized layer is determined by the method M as per GOST 1763 - 68. Upon agreement between nanufacture and customer, it is permitted to determine the decarbonized layer of calibrated steel by method T as per GOST 1763 - 68.

4.9. Grain size is determined as per GOST 5639 - 82. Grain size for steel of case hardening grates is carried out by case hardening method, temper hardening - by oxidation method, steel of grade 38X2MIOA - by etching method.

Amended edition, Amendment No. 5).

4.10. Hardenability is determined by end hardening method as per GOST 5657

4.11. Brinell hardness is determined as per COST 9012 – 59. Number of indentation – not less than three.

(Amended edition, Amendment No. 4).

4.12. Nonmetallic inclusions is determination as per GOST 1778 - 70.

4.13. Steel bars, which have passed the tests on Liacro-structure, hardenability and mechanical properties on the large profile, it is p_ mitted that the test results are made applicable to batch low profile bars.

4.14. In case of detection of flakes at least in one bar, the entire metal of this batch is rejected.

4.13, 4.14. (Amended edition, Amendment No. 2)

4.15. (Delete, Amendment No. 2).

4.16. During the use of static method for inspection of hardness and mechanical properties by manufacturing plant with respect to hormative technical documents, approved in established order, it is permitted to not carry out the inspection of

GOST 4543 No parPosthese Drawings may be reproduced in any form without prior permission in writing of

hardness and mechanical properties, provided by present Gfandard. In this case, manufacturer guarantees the conformity of released products to the requirements of present standard. In arbitrary cases and during periodic inspections of quality of products, methods of inspection, provided by present standard are used.

(Introduced additionally, Amendment No 4).

5. PACKING, MARKING, TRANSPORTATION AND STORAGE

5.1. Marking, packing, transportation and storage of rol' - according to GOST 7566 - 81 with additions.

5.1.1. Transportation of roll is carried out by all types of ransport in accordance with rules of transportation of loads, existing on the form of ransport. Weight of package should not exceed during mechanized loading in open

transportation means - 10 T, in covered transportation -1250 kg.

Means of packing - according to COS 7566 - 81.

By railroad, transportation is accomplished depending on mass and overall dimensions in covered or opened vagons according to GOST 22235 - 76.

(Amended edition, Amendment No. 5). 5.1.2. During the derivery to one address of two or more packages, whose dimensions make it possible to design the transportation packet with overall dimensions according to GOST 24597 - 81, packages should be designed in transport pactets according to GOST 21929-76.

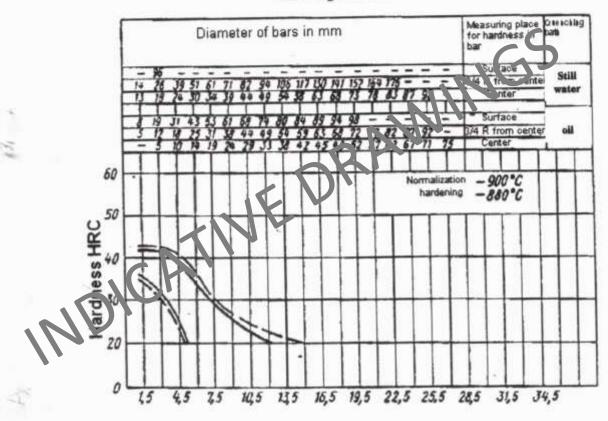
5.3. Marking, packing, transportation and storage of calibrated bar - according OST 1051 - 73, bar with special surface finish - according to GOST 14955 - 77.

(Amended edition, Amendment No. 4, 5).

5.2. Minimum weight of roll of one batch (melt) is established as per the agreement between manufacturer and customer.

As per the requirement of customer, specified in indent, packets, ends or 5.3. end faces of hot rolled and forged roll, and upon agreement between manufacture and customer calibrated bars made up of steels of all grades depending upon the group should be marked with paint of following colour, specified in table 11.

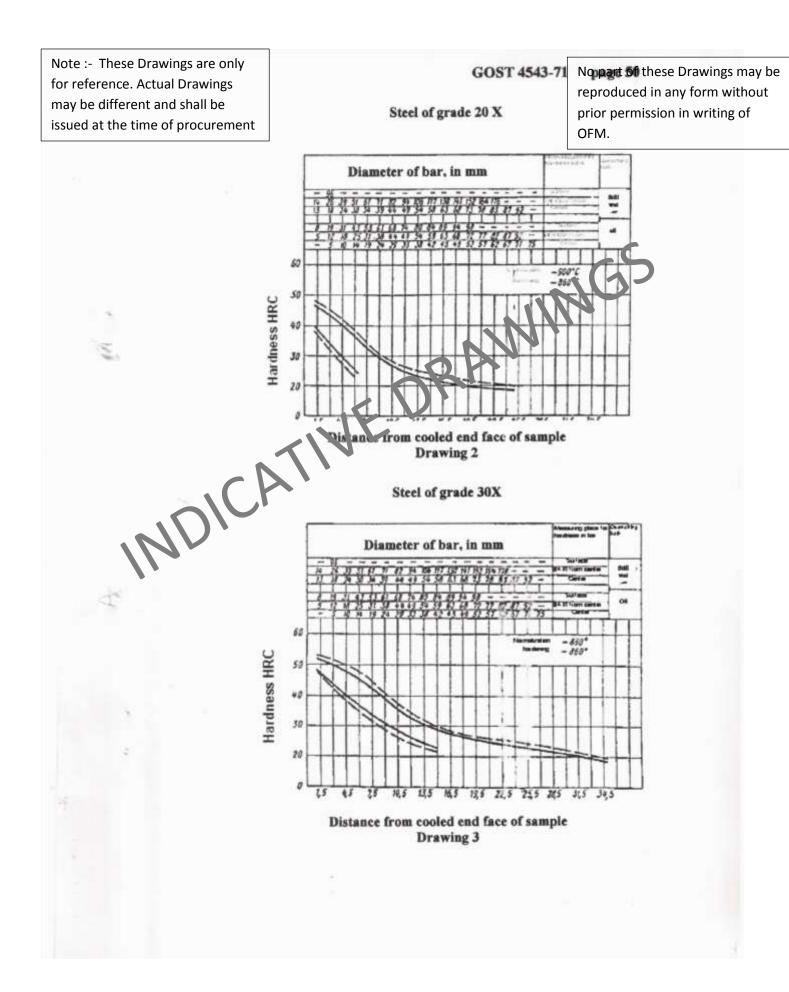
Note :- These Drawings are only for reference. Actual Drawings may be different and shall be issued at the time of procurement	×	GOST 4543-71No part of these Drawings may be reproduced in any form without prior permission in writing of OFM. Table 11
	Group of steel	Colour of paint

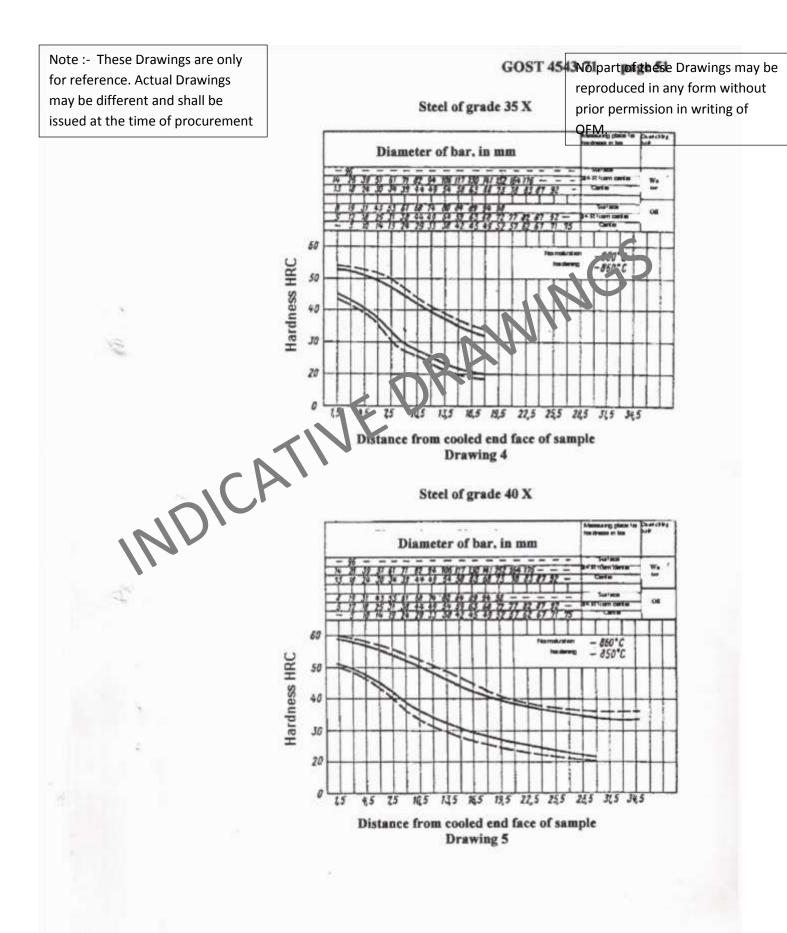

Chrome – manganese Chrome – silicon Chrome – molybdenum and chrome – molybdenum – vanadium	Blue + black Blue + red Green + violet						
Chrome vanadium	Green + black						
Nickel - molybdenum	Yellow + violer						
Chrome - nickel and chrome - nickel with boron	Yellow + black						
Chrome – silicon - manganese	Red + violet						
Chrome - nickel - molybdenum	Violet + black						
Chrome – aluminium and chrome – aluminium with molybdeaum	Aluminum colour						
Note: The colour of paint for marking sta agreement between both the sides. 52, 5.3. Amended edition, Amendmen							

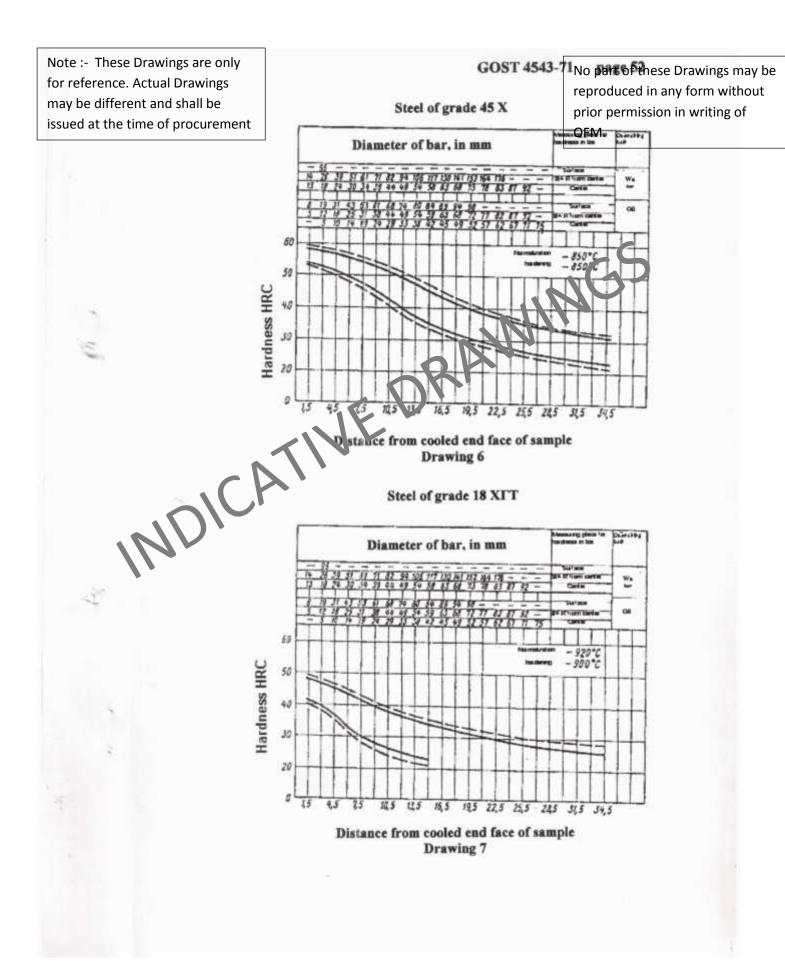
GOST 4543-71

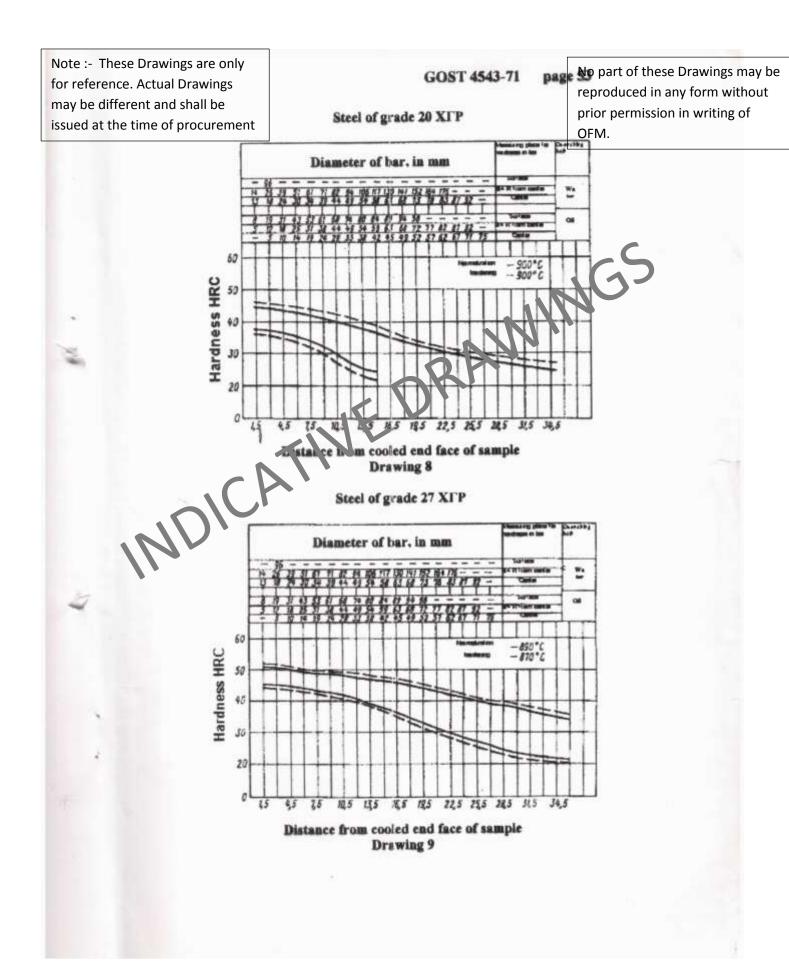
No part of these Drawings may be reproduced in any form without prior permission in writing of

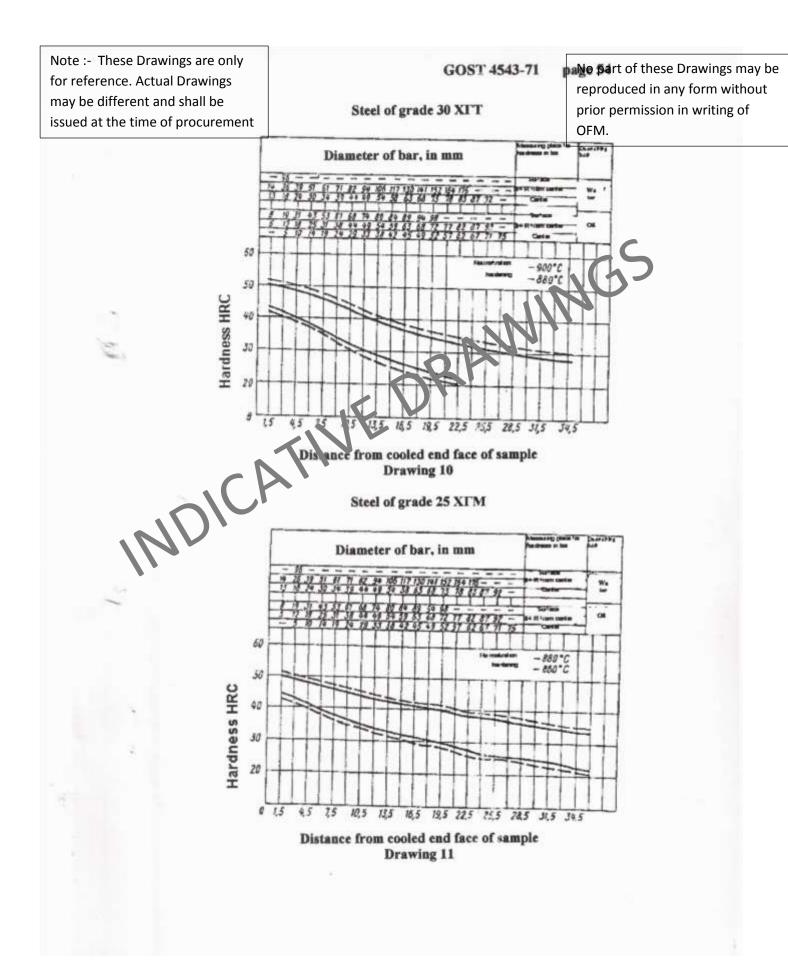
OFM. ABBEXURE 1

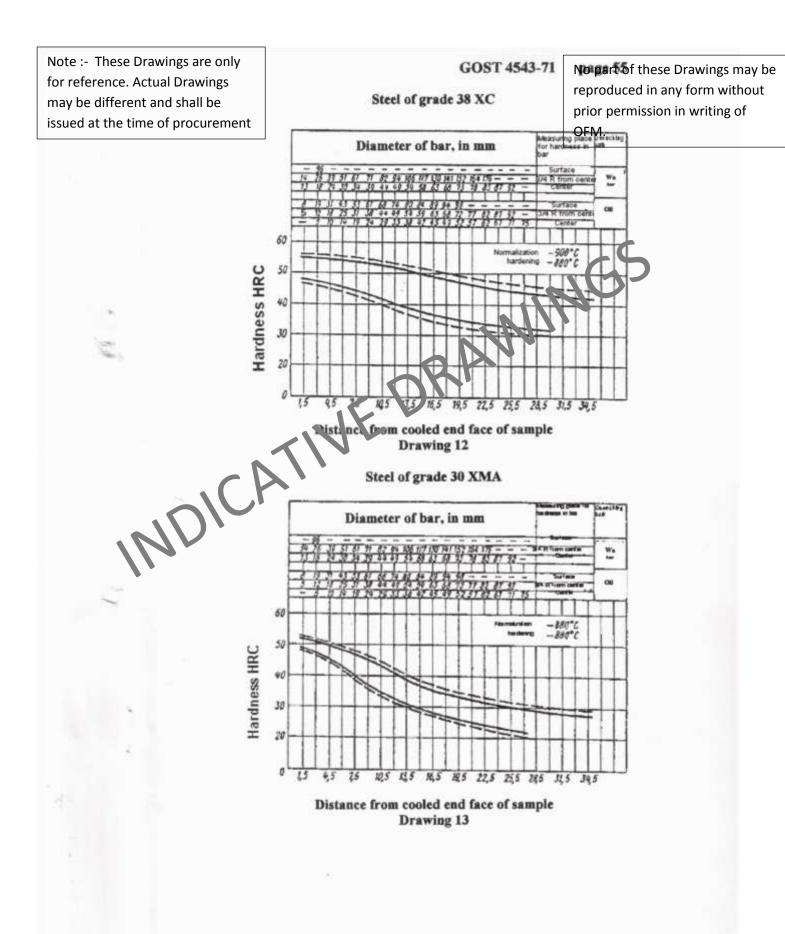

HARDENABILITY BANDS FOR STRUCTURAL ALLOY STEEL

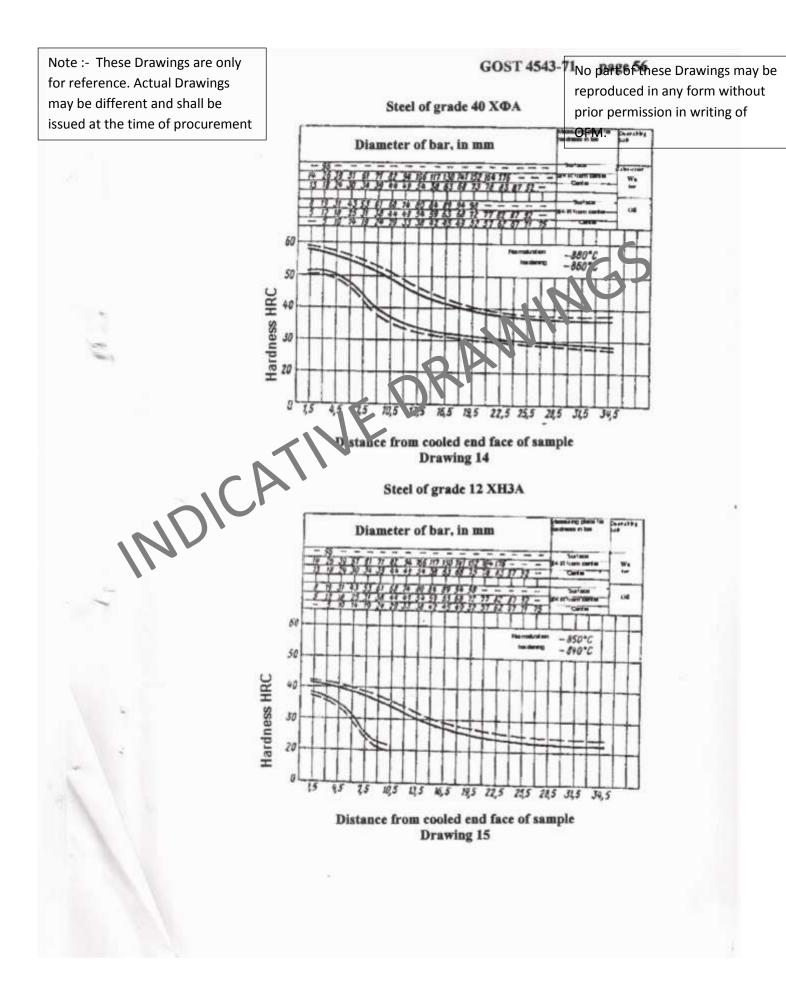


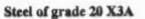

Steel of grade 15X

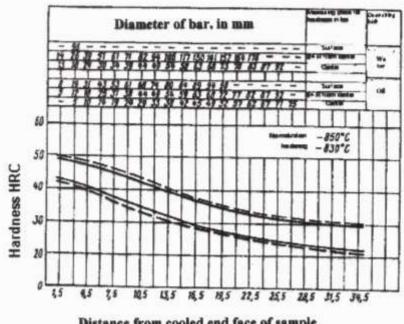

Distance from cooled end face of sample, in mm.

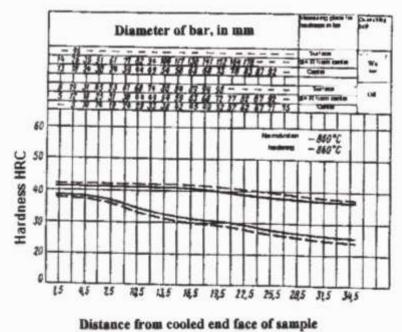

Drawing 1







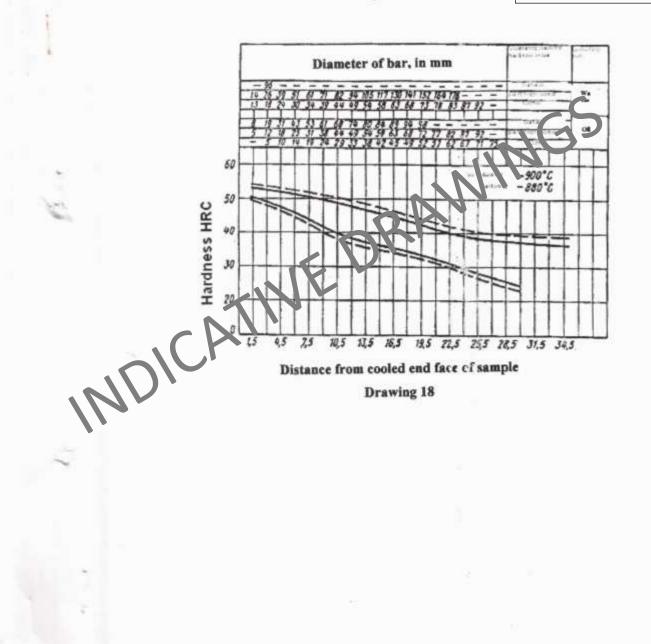




ł

Distance from cooled end face of sample Drawing 16

Steel of grade 12 X2H4A


Drawing 17

1

GOST 4543-71

No part of these Drawings may be reproduced in any form without prior permission in writing of OFM.

Steel of grade 30 XTCA

Note :- These Drawings are only	No part of these Drawings may be
for reference. Actual Drawings	reproduced in any form without
may be different and shall be	prior permission in writing of
issued at the time of procurement	OFM.
17 co. e	GOST 4543-71 page 59

Annexure 2

Di	stance						Har	dness for	r hardes	nabil ty	ronge,	IRC					
1	from	1	l .	2	2	1	l I	2				2	2	1	L		2
	end	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Vi a.	L' L	Min.	Max.	Min.	Max.	Min.	Max.	Min
fa	ice, in								Stee. of	t grade							
8 E	mm		15	X	_		20	X			30	X			35	X	
	1.5	42	35.5	43	34.5	46	39	17.5	37.0	51.5	47.5	53.0	46.5	52.0	45.0	54.0	43
	3.0	41	32.5	43	30	43.5	74	45.0	32.0	50.0	44.0	52.0	42.5	52.0	43.0	53.0	41
	4.5	38	25.5	41	23	40	9.5	42.5	27.0	48.0	40.0	50.0	38.5	50.5	41.0	52.5	39
	6.0	34	-	37		3.5	25	38.5	22.5	45.5	37.0	48.0	35.0	49.5	37.0	52.0	35
	7.5	28.5		31	T-Z	32.5	22	34.0	20.0	43.5	33.5	45.0	32.0	47.0	33.0	50.0	30
	9.0	24.5	-	27		29.5	-	30.5	-	39.5	31.0	41.0	29.0	45.0	29.0	47.0	27
	10.5	22	-	2		26.5	-	28.0	-	36.0	28.5	37.5	26.5	42.0	28.0	44.0	26
	12.0	20.5	-	22.5	-	24.5	-	26.5	-	33.0	26.5	34.5	24.5	39.5	25.5	42.0	23
	13.5			21	_	23	_	25.0	-	30.5	24.5	32.0	23.0	37.0	23.0	39.0	21
	15.0			20	-	22	-	24.0	_	29.0	23.0	30.0	22.0	36.0	22.0	37.0	20
	16.5			-	-	21.5	-	23.5	-	27.5	-	28.5	-	34.0	21.0	36.0	19
	18.0			-		21		22.5		26.5	-	27.5	-	33.0	20.0	34.5	18
	U 5	-	-		-	20	-	22.0	-	26.0		27.0	-	-	-	-	-
	21.0	·	-		-	-	-	21.5	-	25.0		26.5	-		-	-	-
	24.0	-	-		-		-	-	-	24.0		25.0	-	-	-	-	-
	27.0	-	-	-	-	-	-	-	-	22.5	-	23.5		10123		17 <u>1 - 1</u> 71	
	30.0		-	-	-	-		-	_	21.0	-	22.0	-			-	-
	33.0		-		-	-	-			19.5	-	20.5	-	-	-	-	
	36.0		-	_	-	-	-		_	-	-	-	-	-	-	-	
	39.0		-	-	-	-	-	-	-	-	-	-	-	-	-	-	

1 – REDUCED RANGE 2 – GRADE – CHARACTERISTIC RANGE

No part of these Drawings may be reproduced in any form without prior permission in writing of OFM.

GOST 4543-71 page 60

÷.

										C					Contin	nustio
Distance					_	Har	dness fo	r harder	abili y	range, H	IRC					_
from	. 1		1	2	1	1	1	2			1	2	1	1	1	2
end	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Mii.	NTa.	Min.	Max.	Min.	Max.	Min.	Max.	Min
face, in								Ste I a	grade							
mm		40	X			4	5X -			183	TT		_	303	TT	
1.5	58.5	51	59.5	49	58	54	5.	53	48	41	49	40	50.5	43.5	52	41.4
3.0	58	49.5	59	48	57.5	. 25	35	51.5	46	39.5	48	38	49.5	42.5	51	40,5
4.5	57	47.5	58	46.5	E.c.		57.5	50	45	36	46	35	48.5	40.5	50	39
6.0	55.5	45	56.5	43.5	56	19.5	57	48	43	33	44.5	31	47.5	38.5	49	37
7.5	53.5	40.5	56	-8	5 5	47.5	56	46	41	30	43	28	46.5	36.5	48	35
9.0	52.5	39	54	3. 0	53	46.5	54	43.5	39.5	28	41	255	44.5	34.5	46.5	32
10.5	50.5	36.5	.75	332	51.5	42.5	53	41	38	26.5	39.5	24	43	32.5	44.5	30,
12.0	48	34	5	31	49.5	40	51.5	38	36.5	25	38	22.5	41.5	30,5	43	28.
13.5	46	.75	49	29.5	47.5	37.5	49.5	36	35.5	24	36.5	21.5	40	29	41.5	27
150	46 5	30-	48	28	46	35	48	33	34	23	36	21	38	28	40	26
16.5	4.5	. 9.5	44.5	26.5	44	34	45.5	32.5	33	8	34.5	-	37	26.5	38.5	24
18.0	3 1	28	42.5	26	42	32	43.5	31	32	-	33.5	-	36	25	37.5	23
19.	3.5	27	41	25	40.5	31	42	29.5	31	-	33	-	35	24	36.5	22
210	38.5	265	39,5	24	39	29.5	40,5	28.5	30.5	-	32	_	34	23	36	21
2-2)	36.5	245	38	22.5	36	28	38	26.5	29	\rightarrow	31	-	32		34	-
27.0	35	23	36.5	21.5	35	26.5	36	25	275	-	29,5	-	30.5		32.5	-
30.0	34	22	36	20	32.5	25.5	34	24	265	-	29	-	29.5		31.5	-
33.0		-	-		32.5	24	33	22.5	26	-	28	-	28,5	-	30.5	-
36.0		-	-		31	23	32.5	21.5	-	-	-	-	-	-		-
39.0	-	-	-	-	31	21.5	32.5	20.5	-	-	-	-	-	-		-

2.

1 - REDUCED RANGE

2 - GRADE - CHARACTERISTIC RANGE

Note :- These Drawings are only for reference. Actual Drawings may be different and shall be issued at the time of procurement	No part of these Drawings may be reproduced in any form without prior permission in writing of Page 61	
issued at the time of procurement	OFM.	

Continuation

Dis	tance						Har	dacss fo	r harde	nability	range, H	RC					
1	rom	1	l	1	2	1	1	6.1	2	1	1	1	2	1			2
	end	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min
fa	ce, in								Steel o	f grade							
1	nm		202	(TP			273	(TP			25X	ГМ			30X	MA	
	1.5	44.5	37.5	46.0	36.0	50.5	45.0	51.5	44.0	50.0	110	51.0	43.0	52.0	49.0	53.0	48, 0
	3.0	44.0	37.0	45.5	35.5	50.5	45.0	51.5	44.0	19. 1	2.5	50.0	41.5	51.0	47.5	52.0	46.5
	4.5	43.5	36.5	45.0	35.0	50.0	44.5	51.0	43.5	4 0	41.0	49.0	40.0	50.0	46.0	51.0	44.5
	6.0	43.0	33.5	44.5	33.5	50.0	44.5	51.0	1.5	41.3	39.0	48.0	38.0	48.5	43.5	49.5	42.1
	7.5	42.5	33.5	44.0	32.0	49.0	43.5	59.5	42.5	46.0	37.5	47.5	36.0	47.0	40.0	48.0	39.
	9.0	41.0	32.0	43.0	30.0	48.5	43.5	50. 1		45.0	36.5	46.5	35.0	45.0	37.0	46.5	35.
	10.5	40.0	30.0	42.5	27.5	48.0	02.0	.9.5	41.5	44.0	35.5	45.5	34.0	43.5	34.5	45.0	33.
	12.0	39.0	27.5	41.5	25.0	47.5	1 5	49.0	40.0	43.0	34.5	45.0	33.0	41.5	33.0	43.0	31.
	13.5	37.5	25.5	40.0	23.0	4 0	41.0	48.5	38.5	42.5	33.5	44.0	32.0	39.0	31.5	40.5	30.
	15.0	37.0	24.0	39.0	22.0		39.0	48.0	37.5	42.0	33.0	43.0	30.5	36.5	29.5	36.0	28.
	16.5	35.0	-	37.0		46.0	36.5	47.5	35.0	41.0	31.5	42.5	29.5	35.5	28.5	37.0	27.
the second se	18.0	34.0	-	36.5		45.0	35.5	46.5	33.0	40.5	31.0	42.0	28.5	34.5	27.5	36.0	26
-	19.5	33.0	-	4.0		44.0	34.0	46.0	32.0	39.5	30.0	41.0	27.5	33.5	26.5	35.0	25
- Andrewson - A	21.0	31.5	-	3.0	-	43.0	32.0	44.5	30.0	38.5	29.0	40.5	26.5	32.5	25.5	34.0	24
-	24.0	29.5		31.0	-	41.5	29.0	42.5	27.0	37.5	27.0	39.5	25.0	31.0	24.0	32.5	22
	27.0	28 0		29.5	-	40.0	26.5	41.0	25.0	36.5	26.0	38.5	24.5	30.0	22.0	32.0	20.
and an other data	30.0	79.7	1	28.5	-	38.0	24.0	39.0	23.0	35.5	25.0	37.5	23.5	29.0	-	31.0	-
	33.	2 5	_	27.5	-	36.0	22.5	37.5	21.5	34.5	24.0	36.0	22.5	28.0	-	30.0	
	~ 0	20	-	27.0	-	34.0	21.5	35.0	20.0	33.5	22.5	35.0	21.0	-	-	-	

1 - REDUCED RANGE

2 - GRADE - CHARACTERISTIC RANGE

GOST 4543-71 page 61

Note :- These Drawings are only for reference. Actual Drawings	No part of these Drawings may be
may be different and shall be	reproduced in any form without prior permission in writing of
issued at the time of procurement	OFM. GOST 4543-71 page 62

Distance	Hardness for hardenability range, HRC													
from	1	1	2	2	1			2	1	1	2			
end face,	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.		
in mm						1	Steel of grad	le						
		3	8XC			40X	ΦA			12XH	3A			
1.5	55	48	56	46.5	58	51.5	59.5	50	41	38	41.5	37		
3.0	55	47.5	56	45.5	57	51.5	58.5	4.7	40.5	36, 5	41.5	35.5		
4.5	54.5	46.5	56	45	56	50.5	57	49	39.5	34.5	40.5	33		
6, 0	54	45.5	55.5	44	54.5	48		46.5	38.5	31	39.5	29.5		
7.5	53.5	44.5	55	43	53, 5	43,	- 8 4 75	42	36.5	25.5	39	23		
9.0	53	43.5	54.5	41.5	51	39. :	.3	38	35.5	22.5	37	21		
10.5	52.5	42	54	40	49	37	51	35	34	-	35, 5	-		
12.0	52	40.5	53.5	38.5	47. 5	35	49	33.5	32	-	33.5	-		
13.5	51	39	53	37	44	- 34	46.5	32.5	30		31.5	-		
15.0	50	38	52	36	43.5	33.5	45	32	28.5	-	30	-		
16.5	49	36, 5	51	34.5	41.5	32.5	43	31	27	_	29			
18, 0	48	35.5	50	34	40.5	32	41.5	30.5	26		28	-		
19.5	47.5	35	49.5	3	39	31.5	40.5	30	25		27	-		
21.0	46.5	34.5	.0	32.5	38.5	31	39.5	29.5	24.5	-	26.5	-		
24.0	45	33	4.6-	31	37.5	30	38.5	29	23.5		25.5	-		
27.0	44	32.1	4.5	30.5	36.5	29.5	37.5	28.5	23	-	24.5	-		
30.0	43	37	45	30	36.5	29.5	38	28	22.5		24	-		
33.0	42	29	45	27	36.5	28,5	37.5	27.5	12.5		24	-		
36.0	47	25	44.5	23	36.5	28	37.5	2.7				-		
39. U		22	44	20	36.5	25.5	37.5	25	_	_	-	-		
42.0		_			36, 5	23	37.5	22.5	-	-		-		
45.0	-	_		-	36.5	21	37.5	20	-	-		-		
48.0	_	_		_	-			-	-	-		-		

1 - REDUCED RANGE

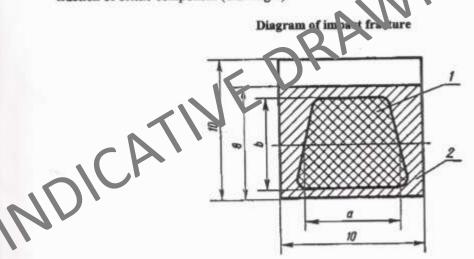
2 - GRADE - CHARACTERISTIC RANGE

GOST 4543-71 page 62

ote :- These Drawings are only or reference. Actual Drawings hay be different and shall be sued at the time of procurement				4			reprod	of these Dra uced in any f ermission in v				
		87.34	F-						GOST 45	43-71 page	63	
											Conti	nuation
Distance from end					Ha	rdness for	hardenabili	ty range, H	AC .			
face, in mm	Max.	l Min.	Max.	2 Min.	Max.	Min.	2 Max.	Mi	Max.	Min.	Max. ²	Min.
							Steel of g ad					
-		20	XH3A			12X2				N		
1.5	49	43	49.5	41.5	41.5	37.5	4.	37	53	50	54	49
3.0	48	41.5	49	40.5	41.5	36. :	12	36	52	49	53	47.5
4.5	47.5	40.5	48, 5	39.5	41.5	. 6. 5	42	36	51.5	47	52	46
6.0	46.5	39	47.5	37.5	41.5		42	36	50.5	45.5	51.5	44.5
7.5	44.5	37.5	46	36	41. 5	37	42	36	50	44	51	43
9.0	43, 5	35.5	44.5	34	41.5	35	42	34	49.5	41.5	51	40
10.5	42	33	43	32.5	41.5	33.5	42	32.5	48.5	40.5	50	38
12.0	40	32.5	41.5	31	41.5	33	42	32	47.5	38	49.5	36.5
13.5	39	31.5	40	30	41.5	32.5	42	31.5	46.5	37	48, 5	35.5
15.0	37.5	30.5	39	2 9	41.5	31	42	30	45.5	36.5	47	35
16.5	36	29.5	375	27.5	41.5	30.5	42	29.5	44.5	35.5	46	34.5
18, 0	35	28		27	40	30	41	29	43	34.5	45	33.5
19.5	34	27		26	39.5	30	41	29	42	33.5	44 43	32
21.0	33	6. 5	34	25.5	39	29.5	40.5	28.5	41	32	second in which have been addressed in the second	
24.0	-1-	5	32	24.5	38	28.5	40	26.5	39.5 38	30 27.5	41.5	28 25
27.0	34	24.5	31.5	23.5	38	27 27.5	40 39	26	38	25	39	23
30.0	30 29.5	23	31 30.5	22	37.5		39	26	37	25	39	20.5
33.0	29.5	22.5 22.5	30.5	21 21	30	26	- 38	24		-		40.5
36.0 39.0	28	21.5	29	20		_			_	_		-
42.0	28	21.5	29	20	=			_	_	_		_
45.0	28	21.5	29	20	_	_				_		_
48.0	27	21.5	28	20	_	_		-	-	_		_

1 - REDUCED RANGE

2 - GRADE - CHARACTERISTIC RANGE


GOST 4543-71 No.

No part of these Drawings may be reproduced in any form without prior permission in writing of OFM. **ANNEXURE 3 Recommended**

METHOD FOR DETERMINING THE PERCENTAGE VISCOUS COMPONENT IN FRACTURE OF IMPACT SAMPLES (FOR HEAT TREATABLE STEEL)

 Percentage of viscous components in fracture of impact samples characterizes the resistance of steel to brittle fractures.

Brittle component in the fracture of impact sample with section 8×10 mm has the type of trapezoid (drawing 1). Area of this trapezoid F₁ is set as per the degree of increase in fraction of brittle component (drawing 2).

1 - Area of fracture to be covered by brittle component. 2 - Area to be covered by viscous component

Drawing 1.

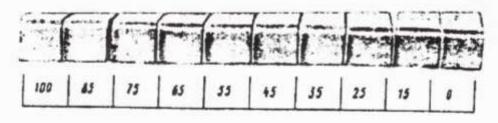
As per rule viscous component is located around brittle component. Area F_1 , occupied by brittle component, is defined as the product of mean line of trapezium a to height b (refer to drawing 1). Ratio of this area to entire area of fracture F (80 mm²) comprises the portion of brittle component in fracture (X) in percentages:

$$=\frac{F_1}{F} \cdot 100$$

Correspondingly, viscous component (B) in the percentages is equal:

B = (100 - X)

 Measurement of the parameters (a, b) area, occupied by brittle components, is carried out by scale with accuracy up to 0.5 mm; in this case measurement error should not exceed
 Knowing parameters a and b, percentage of component is determined according to table.


GOST 4543-71

No part of these Drawings may be reproduced in any form without prior permission in writing of OFM.

Height of aperium b, in mm		Viscous component in the fracture of impact samples, %																	
		Mean line of trapezium a, in mm																	
tinpe in	1.0	1.5	2. 0	2.5	3. 0	3. 5	4.0	4.5	5. 0	5. 5	6.0	6.5	7. 0	7.5	8.0	8.5	9.0	9.5	10
1.0	99	98	98	97	96	96	95	94	94	93	92	92	91	91	90	89	89	85	
1.5	98	97	96	95	94	93	92	92	91	90	89	88	87	86	85	84	13		8
2.0	98	96	95	94	92	91	90	89	88	86	85	84	82	81	80	79	2.1	7.	75
2.5	97	95	94	92	91	89	88	86	84	83	81	80	78	77	75	75	72	70	65
3.0	96	94	92	91	89	87	85	83	81	79	77	76	74	72	70	6.3	66	64	62
3.5	96	93	91	89	87	85	82	80	78	76	74	72	60	1.7	15	63	61	58	56
4.0	95	92	90	88	85	82	80	77	75	72	70	67	65	6	0	57	55	52	50
4.5	94	92	89	86	83	80	77	75	72	69	66	63	1	5	55	52	49	46	44
5.0	94	91	88	85	81	78	75	72	69	66	2	59	56	53	50	47	44	41	37
5.5	93	90	86	83	79	76	72	69	66	0.	2.1	1	52	48	45	42	38	35	31
6.0	92	89	85	81	77	74	70	66	62	59	55	51	47	44	40	36	33	29	25
6.5	92	88	84	80	76		67	63		55	51	47	43	39	35	31	27	23	19
7.0	91	87	82	78	74		61	10	56	52	47	43	39	34	30	26	21	17	12
7.5	91	86	81	77	72		6	5	53	48	44	39	34	30	25	20	16	11	6
8.0	90	85	80	75	70	15	- 1	55	50	45	40	35	30	25	20	15	10	5	0

In such cases, when high strength is not required, percentage of viscous component is permitted to be determined with the help of visual comparison of the form of fracture (on brittle component) with scale (refer to drawing 2).

se for the determination of viscosity of component in the fracture of impact sample

Drawing 2

GOST - 543-71

Note :- These Drawings are only for reference. Actual Drawings may be different and shall be issued at the time of procurement

No part of these Drawings may be reproduced in any form without prior permission in writing of OFM.

SUPERSEDES GOST 1050 - 60 (in the part of stamp 15 Γ , 20 Γ , 25 Γ , 30 Γ , 25 Γ , 40 Γ , 45 Γ , 50 Γ);

GOST 1051 - 59 (in the part of alloyed steel, except surface quality and packing);

GOST 4543-61

REFERENCE OF NORM	A WE - TECHNICAL	DOCUMENTATION
-------------------	------------------	---------------

	Code of HTJ in which reference is given	Point number, Sub point	
	GOST-8.011_80	4.2	
	GOST 8.3.3 - 78	4.2	
	5051-102 - 80	4.2	
	GDST 166 - 80	4.2	
10	GOST 427 - 75	4.2	
	GOST 2216 - 84	4.2	
	GOST 2590 - 88	2.1	
	GOST 2591 - 88	2.1	
12	GOST 2879-88	2.1	
~	GOST 3749 - 77	4.2	
	GOST 5378 - 88	4.2	
	GOST 6507 - 78	4.2	
	GOST 7502 - 89	4.2	
	GOST 12344 - 88	4.1	
1	GOST 12345 - 88	4.1	
2	GOST 12349 - 83	4.1	
1 R .	GOST 12350 - 78	4.1	
1.2	GOST 12351 - 81	4.1	
	GOST 12359 - 81	4.1	
	GOST 18895 - 81	4.1	
	GOST 22235 - 76	5.1.1	
	GOST 26877 - 86	4.2	
		-	

GOST 4543-71

No part of these Drawings may be reproduced in any form without prior permission in writing of OFM.

Republication with Amendment No. 1, 2, 3, 4, 5, approved in 1977, July 1982, February 1987, June 1987. (BYC 5-77, 11-82, 5-87, 10-87).

Note :- These Drawings are only for reference. Actual Drawings may be different and shall be issued at the time of procurement